K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

`(x+y)^2 -2(x+y)(x-y)+(x-y)^2`

\(=\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =\left(2y\right)^2\\ =4y^2\)

22 tháng 10 2023

\(\left(x+y\right)^2+\left(x-y\right)^2+\left(x-y\right)\left(x+y\right)-3x^2\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)+\left(x^2-y^2\right)-3x^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2+x^2-y^2-3x^2\)

\(=3x^2+y^2-3x^2\)

\(=y^2\)

2 tháng 10 2020

MTC: (x+y)(x+1)(1-y)

\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)

\(=x-y+xy\)

Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định

22 tháng 10 2020

Bài làm

a) 2(x + y)3 + 2(x - y)3 

= 2[(x + y)3 + (x - y)3]

= 2[x3 + 3x2y + 3xy2 + y3 + x3 - 3x2y + 3xy2 - y3]

= 2[(x3 + x3) + (3x2y - 3x2y) + (3xy2 + 3xy2) + (y3 - y3)]

= 2[2x3 + 6xy2]

= 4x3 + 12xy2

b)uhm... Mình sửa đề chút, thay vì là -3(x + y)2(x - y) thì mình sẽ thành +3(x + y)2(x - y)

(x - y)3 - (x + y)3 + 3(x + y)2(x - y) - 3(x + y)(x - y)2

= -[(x + y)3 - 3(x + y)2(x - y) + 3(x + y)(x - y)2 - (x - y)3]

= -[(x + y) - (x - y)]3 

= -[x + y - x + y ]3

= -[y]3 

= -y

6 tháng 6 2017

\(a,\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)\(b,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3x^2\)\(c,\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2=\left(x-2y\right)^2\)

17 tháng 6 2017

a) \(\left(x+y\right)^2+\left(x-y\right)^2\)

=\(\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)

=\(x^2+2xy+y^2+x^2-2xy+y^2\)

\(2x^2+2y^2=2\left(x^2+y^2\right)\)

b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

=\(\left[\left(x-y\right)+\left(x+y\right)\right]^2\)

= \(\left(x-y+x+y\right)^2\)

\(=2x^2\)

c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2-2\left(x-y+z\right)\left(z-y\right)+\left(z-y\right)^2\)

\(=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2\)

= \(\left(x-y+z-z+y\right)^2=x^2\)

27 tháng 6 2016

a) \(x\left(x^2-16\right)-\left(x^2+1\right)\left(x-1\right)\) =\(x^3-16x^2-x^3+x^2-x+1\)

                                                        = \(x^2-17x+1\)

b) \(\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\) = \(\left(y^4-81\right)-\left(y^4-16\right)\)

                                                       =\(-65\)

27 tháng 6 2016

bạn tính sai câu a

17 tháng 1 2019

tra loi nhanh di ae

28 tháng 10 2018

\(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x-y\right)\left(x+y\right)-4x^2\)

\(=\left(x-y-x-y\right)^2-\left(2x\right)^2\)

\(=\left(-2y\right)^2-\left(2x^2\right)\)

\(=4y^2-4x^2\)

28 tháng 10 2018

\(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x-y\right)\left(x+y\right)-4x^2\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right]-\left(2x\right)^2\)

\(=\left[\left(x-y\right)-\left(x+y\right)\right]^2-\left(2x\right)^2\)

\(=\left(x-y-x-y\right)^2-\left(2x\right)^2\)

\(=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y\right)^2-\left(2x\right)^2\)

14 tháng 6 2016

\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy+y^2\)

\(=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2\)

\(=4x^2\)

a,2(x-y)(x+y)+(x+y)2+(x-y)2

=2(x2-y2)+x2+2xy+y2+x2-2xy+y2

=4x2

b,=x2