Có 2 số nguyên a,b nào thoả mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\). Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
à, đọc nhầm đề nha bạn, giả sử điều trên là đúng, sau đó chứng mình là sai rồi kết luận
Giả sử \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) là đúng
\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)
\(\Leftrightarrow-\left(a-b\right)^2=ab\)
\(\Leftrightarrow-\left(a-b\right)\left(a-b\right)=ab\)
\(\Leftrightarrow-\left(a^2-ab-ab-b^2\right)=ab\)
\(\Leftrightarrow-a^2+2ab-b^2=ab\)
\(\Leftrightarrow-a^2+ab-b^2=0\)
\(\Leftrightarrow-\left(a^2-ab+\frac{1}{4}b^2\right)-\frac{3}{4}b^2=0\)
\(\Leftrightarrow-\left(a-\frac{1}{2}b\right)^2-\frac{3}{4}b^2=0\)
\(\Leftrightarrow-\left[\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\right]=0\)
\(\Leftrightarrow\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2=0\)(vô lí)
Vậy điều giả sử là sai
Vậy không có số nguyên a, b nào thỏa mãn
mk chưa hc tới bài này nên ko biết làm,thông cảm nha.Nhưng cho mk hỏi hậu tạ cái j z bạn
- TRỊNH THỊ THANH HUYỀN Hậu tạ nghĩa là trả ơn sau khi nhận được sự giúp đỡ.
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
\(a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=\frac{2013}{1990}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{23}{1990}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{\frac{1990}{23}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{12}{23}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{\frac{23}{12}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{11}{12}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{\frac{12}{11}}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{1+\frac{1}{11}}}}\)
Vậy a = 1; b = 86; c = 1; d = 1; e = 11
Vậy a + b + c + d + e = 1 + 86 + 1 + 1 + 11 = 100
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)
Cộng vế theo vế ta được
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)
\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\Rightarrow\left(a-b\right)\left(b-a\right)=ab\Rightarrow-\left(a-b\right)^2=ab\)
mà \(-\left(a-b\right)^2\le0\forall\left\{a;b\right\}\Rightarrow ab\le0\forall\left\{a;b\right\}\)=> a và b ko thể cùng dương
Vậy, ko tồn tại 2 số nguyên dương a và b
Ta có: 1/a -1/b = 1/(a-b) => (b-a)/ab = 1/(a-b) => (a-b)(a-b)= -ab (vô lí do (a-b)^2 lớn hơn hoặc =0 và ab dương)
=> Không tồn tại.
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(b-a\right)}{ab\left(a-b\right)}=\frac{ab}{\left(a-b\right)ab}\)
\(\Leftrightarrow-\left(b-a\right)^2=ab\)
Áp dụng BĐT cô-si ta có : \(a^2+b^2\ge4ab\)
Vậy không có a,b thỏa mãn