Chứng minh đường thẳng Euler đúng với mọi tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh hình thì phải nhờ thánh toán trong đội tuyển của mk
Kiến thức lớp 7 thì mình không nghĩ ra, nhưng với kiến thức lớp 10 thì sử dụng phương pháp vecto giúp giải các bài này dễ dàng
Ta có:
góc AEC = góc BAD ( 2 góc đồng vị và AD // EC)
góc ACE = góc DAC ( 2 góc so le trong và AD // EC)
góc BAD = góc DAC ( AD là tia phân giác của góc BAC)
=> góc AEC = góc ACE
A B C H I J K M N P D E F
I, J, K lần lượt là chân đường cao hạ từ A, B, C; H là giao điểm ba đường cao
M, N, P lần lượt là trung điểm của BC , AC, AB
D, E, F lần lượt là trung điểm của HA, HB, HC
O là giao điểm của NE và PF
+) NP là đường trung bình tam giác ABC => NP//=1/2 BC (1)
EF là đường trung bình tam giác HCB => EF//=1/2 BC (2)
Từ (1), (2) => NFEP là hình bình hành (3)
NF là đường trung bình tam giác ACH => NF//AH=> NF//AI mà AI vuông BC , BC//EF => NF vuông EF (4)
Từ (3), (4) => NFEP là hình chữ nhật => Tâm đường tròn ngoại tiếp NFEP là O giao của FP và NE
và O là trung điểm FP, O là trung điểm NE
+) Tương tự NDEM là hình chữ nhật => Tâm đường tròn ngoại tiếp NDEM là O ( trung điểm NE)
=> O là trung điểm DM
+) Tam DIM vuông tại I => Tâm đường tròn ngoại tiếp DIM là O trung điểm DM
+) Tương tự O là tâm đường tròn ngoại tiếp tam giác FJP, EKN
=> Vậy 9 điểm trên cùng thuộc đường tròn tâm O đường kính NE
Câu hỏi của Mavis Vermillion - Toán lớp 9 - Học toán với OnlineMath Em tham khảo ở link này nhé!
\(a)\)
\(\text{Ta có}:\)
\(\Delta ABC\)\(\text{vuông tại}\)\(A\)
\(\rightarrow BC^2=AB^2+AC^2\)
\(\rightarrow AC^2=BC^2-AB^2\)
\(\rightarrow AC^2=15^2-9^2\)
\(\rightarrow AC^2=144\)
\(\rightarrow AC=12\)
\(\rightarrow AB< AC< BC\)
\(\rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)
\(\text{Ta có:}\)
\(AB\perp AC\rightarrow\widehat{BAC}=\widehat{EAC}\)
\(\rightarrow AB=AE\rightarrow A\)\(\text{là trung điểm}\)\(BE\)
\(b)\)
\(\text{Theo phần a), ta có:}\)\(AB=AE\rightarrow A\text{ }\)\(\text{là trung điểm}\)\(BE\)
\(\rightarrow CA\)\(\text{là trung tuyến}\)\(\Delta CBE\)
\(\text{Mà}\)\(BH\)\(\text{là trung tuyến}\)\(\Delta BCE\)\(,\)\(BH\text{∩}\text{ }CA=M\)
\(\rightarrow M\text{ }\)\(\text{là trọng tâm}\)\(\Delta BCE\)
\(\rightarrow CM=\frac{2}{3}CA\)
\(\rightarrow CM=8\)
\(c)\)
\(\text{Theo phần a)}\)\(\rightarrow\widehat{ECA}=\widehat{ACB}\)
\(\rightarrow\widehat{CEA}=\widehat{CBA}\)
\(\text{Do}\)\(AK//CE\rightarrow\widehat{KAB}=\widehat{AEC}=\widehat{CBA}=\widehat{KBA}\rightarrow KB=KA\)
\(\widehat{KAC}=\widehat{ECA}=\widehat{ACB}=\widehat{ACK}\rightarrow KA=KC\)
\(\rightarrow KB=KC\rightarrow K\)\(\text{là trung điểm}\)\(BC\)
\(\text{Mà}\)\(M\)\(\text{là trọng tâm}\)\(\Delta CBE\rightarrow E,MK\)\(\text{thẳng hàng}\)
đây phải ko
sao hoả