K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

1. Ta có \(\frac{x^3+4x^2+ax+b}{x^2+x-2}=\frac{x\left(x^2+x-2\right)+3\left(x^2+x-2\right)+\left(a-1\right)x+b+6}{x^2+x-2}=x+3+\frac{\left(a-1\right)x+b+6}{x^2+x-2}\)

Để đa thức \(x^3+4x^2+ax+b\)chia hết cho đa thức \(x^2+x-2\)

thì \(\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)

Vậy a=1;b=-6 thì ....

2. Ta có \(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\forall x\)

\(\Rightarrow M\ge-36\)

Vậy \(MinM=-36\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

7 tháng 12 2019

1) Có A = x3 + 4x2 + ax + b

             = x3 + x2 - 2x + 3x+ 3x - 6 - x + ax + b + 6

             = x(x2 + x - 2) + 3(x2 + x - 2) + (a - 1)x + (b + 6)

             = (x2 + x - 2)(x + 3) + (a - 1)x + (b + 6)

Do (x2 + x - 2)(x + 3) chia hết cho x2 + x - 2 nên để A chia hết cho x2 + x - 2

thì (a - 1)x + (b + 6) = 0 với mọi x

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)

2) Có M = (x - 1)(x + 2)(x + 3)(x + 6)

              = [(x - 1)(x + 6)] [(x + 2)(x + 3)]

              = (x2 + 5x - 6)(x2 + 5x + 6)

              = (x2 + 5x)2 - 36

Thấy (x2 + 5x)2 ≥ 0 với mọi x

=> (x2 + 5x)2 - 36 ≥ -36 với mọi x

=> M ≥ -36 với mọi x

Dấu "=" xảy ra khi x2 + 5x = 0 

                    <=> x(x + 5) = 0

                    <=> x = 0 hoặc x + 5 = 0

                    <=> x = 0 hoặc x = -5

Vậy min M = -36, đạt đc khi x = 0 hoặc x = -5

P/s: ko chắc

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

26 tháng 12 2021

b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)

3 tháng 3 2019

Alo đề nghị viết đề một cách chính xác 

22 tháng 3 2016

làm từ nãy tới giờ bó tay rùi!

22 tháng 3 2016

Phân tích đa thức x2+ x-6 = (x-2)(x+3)

Gọi thương của phép chia f(x) cho đa thức trên là Q(x)

Ta có f(2)= 8+ 2a+b=0

Suy ra 2a+b=-8

lại có f(-3)= -27+ 3a+b=0

Suy ra 3a+b=27

đến đây ta dùng máy tính giải hệ ta được a=35;b=-78

29 tháng 10 2021

Bài 1:

Ta có: \(5x^3-3x^2+2x+a⋮x+1\)

\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)

\(\Leftrightarrow a-10=0\)

hay a=10