1) Xác định a,b để đa thức: x3+4x2+ax+b chia hết cho đa thức x2+x-2
2) tìm giá trị nhỏ nhất của biểu thức: M= (x-1)(x+2)(x+3)(x+6)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Cách 1:
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)
Phân tích đa thức x2+ x-6 = (x-2)(x+3)
Gọi thương của phép chia f(x) cho đa thức trên là Q(x)
Ta có f(2)= 8+ 2a+b=0
Suy ra 2a+b=-8
lại có f(-3)= -27+ 3a+b=0
Suy ra 3a+b=27
đến đây ta dùng máy tính giải hệ ta được a=35;b=-78
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
1. Ta có \(\frac{x^3+4x^2+ax+b}{x^2+x-2}=\frac{x\left(x^2+x-2\right)+3\left(x^2+x-2\right)+\left(a-1\right)x+b+6}{x^2+x-2}=x+3+\frac{\left(a-1\right)x+b+6}{x^2+x-2}\)
Để đa thức \(x^3+4x^2+ax+b\)chia hết cho đa thức \(x^2+x-2\)
thì \(\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)
Vậy a=1;b=-6 thì ....
2. Ta có \(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\forall x\)
\(\Rightarrow M\ge-36\)
Vậy \(MinM=-36\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
1) Có A = x3 + 4x2 + ax + b
= x3 + x2 - 2x + 3x2 + 3x - 6 - x + ax + b + 6
= x(x2 + x - 2) + 3(x2 + x - 2) + (a - 1)x + (b + 6)
= (x2 + x - 2)(x + 3) + (a - 1)x + (b + 6)
Do (x2 + x - 2)(x + 3) chia hết cho x2 + x - 2 nên để A chia hết cho x2 + x - 2
thì (a - 1)x + (b + 6) = 0 với mọi x
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)
2) Có M = (x - 1)(x + 2)(x + 3)(x + 6)
= [(x - 1)(x + 6)] [(x + 2)(x + 3)]
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 36
Thấy (x2 + 5x)2 ≥ 0 với mọi x
=> (x2 + 5x)2 - 36 ≥ -36 với mọi x
=> M ≥ -36 với mọi x
Dấu "=" xảy ra khi x2 + 5x = 0
<=> x(x + 5) = 0
<=> x = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = -5
Vậy min M = -36, đạt đc khi x = 0 hoặc x = -5
P/s: ko chắc