K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2023

\(\left|x\right|+3=5\)

\(\left|x\right|=5-3=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

12 tháng 10 2023

|x|=5-3

|x|=2

 

23 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

22 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

22 tháng 10 2021

a) Thay x + 3y - 2z vào biểu thức ta có:

 \(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(​​​​\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhua ta có:

\(​​​​\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = ​​​​\dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\) 

=\(​​​​\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(​​​​\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)

=\(​​​​\dfrac{36 + 9}{9}\) = 5

=> \(​​​​\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6

=>

=>

Vậy ...

(Bạn dựa theo cách này và lm những bài tiếp nhé!)

 

 

 

 

 

30 tháng 10 2021

a) \(x=0,05\)

b) \(x=1,125\)

c) \(x=0,96\)

d) \(x=0,025\)

30 tháng 10 2021

Bạn tự làm đi dễ mà . Cố mag vận động đầu óc đừng copy làm bài nữa khó lắm mới hỏi thôi

Ai giải giúp mấy bài toán vsBài 1:A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)Bài 2 rút gọn biểu thứcA=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)Bài 3 cho biểu...
Đọc tiếp

Ai giải giúp mấy bài toán vs

Bài 1:

A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)

B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)

Bài 2 rút gọn biểu thức

A=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0

B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)

Bài 3 cho biểu thức

P=\(\left(\frac{x-2}{x+2\text{√}x}+\frac{1}{\text{√}x+2}\right)\frac{\text{√}x+1}{\text{√}x-1}\)

a)Rút gọn P

b)tìm x để P=\(\text{√}x+\frac{5}{2}\)

bài 4 rút gọn biểu thức 

A=\(\frac{1}{x+\text{√}x}+\frac{2\text{√}x}{x-1}-\frac{1}{x-\text{√}x}\)

B=\(\left(\frac{x}{x+3\text{√}x}+\frac{1}{\text{√}x+3}\right):\left(1-\frac{2}{\text{√}x}+\frac{6}{x+3\text{√}x}\right)\)

Bài 5

A=\(\left(\frac{2}{\text{√}x-3}-\frac{1}{\text{√}x+3}-\frac{x}{\text{√}x\left(x-9\right)}\right):\text{(√}x+3-\frac{x}{\text{√}x-3}\)

a)rút gọn A

b)tìm gtri x để A= -1/4

AI GIẢI GIÙM MÌNH ĐI MÌNH TẠ ƠN

0
22 tháng 10 2021

a. Theo t/c của dãy tỉ số bằng nhau ta có:

x+y+z/2+3+5=40/10=4

=>x=4.2=8

=>y=4.3=12

=>z=4.5=20

 

 

22 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)

Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)

21 tháng 9 2017

Cần cm : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng; dấu "=" xảy ra \(\Leftrightarrow ab\ge0\))

Áp dụng ta có :

\(A=\left|x+3\right|+5\left|6x+1\right|+\left|x-1\right|+3=\left(\left|x+3\right|+\left|1-x\right|\right)+5\left|6x+1\right|+3\)

\(\ge\left|x+3+1-x\right|+5\left|6x+1\right|+3=5\left|6x+1\right|+7\ge7\) có GTNN là 7

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(1-x\right)\ge0\\\left|6x+1\right|=0\end{cases}\Rightarrow x=-\frac{1}{6}\left(TM\right)}\)

vẬY \(D_{min}=7\) khi \(x=-\frac{1}{6}\)

15 tháng 9 2017

Xét \(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\)(1)

Ta có \(\left|y+1\right|\ge0\Leftrightarrow\left|y+1\right|+3\ge3\Rightarrow\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\) nên \(VP\le4\)(2)

Từ (1) ; (2) \(\Rightarrow VP\le4\le VT\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\\\left|y+1\right|=0\end{cases}\Rightarrow\hept{\begin{cases}1\le x\le5\\y=-1\end{cases}}}\)