So sánh:
199^20 và 125^7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : \(3^{39}=\left(3^{13}\right)^3=1594323^3\)
\(11^{21}=\left(11^7\right)^3=19487171^3\)
Vì \(1594323< 19487171\)
\(=>1594323^3< 19487171^3\)
\(=>3^{39}< 11^{21}\)
Vậy \(3^{39}< 11^{21}\)
b)Ta có : \(199^{20}=\left(199^4\right)^5=1568239201^5\)
\(2002^{15}=\left(2002^3\right)^5=8024024008^5\)
Vì \(1568239201< 8024024008\)
\(=>1568239201^5< 8024024008^5\)
\(=>199^{20}< 2002^{15}\)
Vậy \(199^{20}< 2002^{15}\)
c) Ta có:\(125^{90}=\left(125^3\right)^{30}=1953125^{30}\)
\(25^{120}=\left(25^4\right)^{30}=390625^{30}\)
Vì \(1953125>390625\)
\(=>1953125^{30}>390625^{30}\)
\(=>125^{90}>25^{120}\)
Vậy \(125^{90}>25^{120}\)
d)Ta có : \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\)
Vì \(243< 343\)
\(=>243^{100}< 343^{100}\)
\(=>3^{500}< 7^{300}\)
Vậy \(3^{500}< 7^{300}\)
Phù , cuối cùng cũng viết xong . Mỏi tay quá ! À , chúc bạn học tốt nhé !
\(\)
6255 = (54)5 = 54x5 = 520
1257 = (53)7 = 53x7 = 521
Vì 520 < 521 nên 6255 < 1257
3^500 và 7^300
Ta có
3^500=3^5.100=15^100
7^300=7^3.100=21^100
Vì 100 =100 mà 15<21 nên 3^500<7^300
Vậy 3^500<7^300
Câu 2
199^20 và 2003^15
Ta có:
199^20=199^4.5=796^5
2003^15=2003^3.5=6009^5
Vì 5=5 mà 796<6009 nên 199^20<2003^15
Vậy ..............
3500 = 35.100 = (35)100 = 243100
7300 = 73.100 = (73)100 = 343100
Vì 243 < 343
=> 243100 < 343100
=> 3500 < 7300
19920 = 1994.5 = (1994)5 = 15682392015
200315 = 20033.5 = (20033)5 = 80360540275
Vì 15682392015 < 80360540275
=> 19920 < 200315
a, \(125^{20}\)và \(25^{30}\)
ta có : \(125^{20}=\left(5^3\right)^{20}\)\(=5^{3.20}=5^{60}\)
\(25^{30}=\left(5^2\right)^{30}=5^{2.30}=5^{60}\)
Vì \(5^{60}=5^{60}\)nên => \(125^{20}=25^{30}\)
b ,\(49^{16}\)và \(343^{20}\)
ta có : \(49^{16}=\left(7^2\right)^{16}=7^{2.16}=7^{32}\)
\(343^{20}=\left(7^3\right)^{20}=7^{3.20}=7^{60}\)
Vì \(7^{32}< 7^{60}\)nên => \(49^{16}< 343^{20}\)
c, \(121^{15}\)và \(1331^{16}\)
ta có : \(121^{15}=\left(11^2\right)^{15}=11^{2.15}=11^{30}\)
\(1331^{16}=\left(11^3\right)^{16}=11^{3.16}=11^{48}\)
Vì \(11^{30}< 11^{48}\)nên => \(121^{15}< 1331^{16}\)
d, \(199^{20}\)và \(2003^{15}\)
ta có : \(199^{20}=199^{5.4}=\left(199^4\right)^5=1568239201^5\)
\(2003^{15}=2003^{3.5}=\left(2003^3\right)^5=8036054027^5\)
Vì \(1568239201^5< 8036054027^5\)nên => \(199^{20}< 2003^{15}\)
e, \(4^{25}\)và \(3^{30}\)
=> \(4^{25}< 3^{30}\)
f, \(36^{82}\)và \(49^{123}\)
=> \(36^{82}< 49^{123}\)
mình làm rồi đó . k mình đi
ta có:
\(199^{20}=\left(199^4\right)^5=1568239201^5\)
\(2003^{15}=\left(2003^3\right)^5=8036054027^5\)
vì \(1568239201>1\)
\(8036054027>1\)
\(1568239201< 8036054027\)
=>\(199^{20}< 2003^{15}\)
19920=(1994)5=15682392015
200315=(20033)5=80360540275
Vì 1568239201<8036054027
Vậy 19920 <200315
1+2^2+3^2+4^2+5^2+...+99^2