K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

6 tháng 8 2017

Ta có : 10n có tổng các chữ số bằng 1 (\(\forall n\in N\)) (1)

53 = 125 (tổng các chữ số bằng 8) (2)
Từ (1),(2) => 10n + 53 có tổng các chữ số bằng 9 \(⋮9\)
@Hưng Nguyễn

10 tháng 11 2016

a, Đặt A = 10n + 53

=> A = 1000......0(có n số 0) + 125

=> Tổng các chữ số của A là 1 + 0 + 0 + 0 + ....+ 1 + 2 +5 = 9

Mà 9 chia hết cho 9

=> A chia hết cho 9

 

24 tháng 11 2017

a ) Đặt B = 10^n + 5^3

= 10^n + 125

Tổng các chữ số của B là 1 + 1 + 2 + 5 = 9

Mà 9 chia hết cho 9

=> B chia hết cho 9

b ) 43^43 - 17^17 chia hết cho 10

Có 43^1 = 43

43^5 = ....3

43^9 = ....3

...

Ta thấy các mũ số cứ cách nhau 4 đơn vị . Mà ( 43 - 1 ) : 4 = 10 ( dư 2 ) nên tận cùng của 43^43 là 3 . 3 . 3 = 27

=> 43^43 có tận cùng là 7

Tương tự với 17^17 ta có kết quả là 7

Vì 7 - 7 = 0 nên 43^43 - 17^17 chia hết cho 10 ( do số có tận cùng là 0 thì chia hết cho 10 )

22 tháng 12 2023

Số số hạng của B:

2023 - 1 + 1 = 2023 (số)

Do 2023 chia 2 dư 1 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 2 số hạng, còn dư 1 số như sau:

B = 4 + (4² + 4³) + (4⁴ + 4⁵) + ... + (4²⁰²² + 4²⁰²³)

= 4 + 4².(1 + 4) + 4⁴.(1 + 4) + ... + 4²⁰²².(1 + 4)

= 4 + 4².5 + 4⁴.5 + ... + 4²⁰²².5

= 4 + 5.(4² + 4⁴ + ... + 4²⁰²²)

Do 5.(4² + 4⁴ + ... + 4²⁰²²) ⋮ 5

⇒ B = 4 + 5.(4² + 4⁴ + ... + 4²⁰²²) chia 5 dư 4

Vậy B không chia hết cho 5

30 tháng 12 2018

\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)

Với p = 3k + 1

\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)

Với p = 3k + 2

\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

Từ (1) và (2) => ĐPCM

24 tháng 3 2021

Ta có:

A=9999931999−5555571997

A=9999931998.999993−5555571996.555557

A=(9999932)999.999993 − (5555572)998.555557

A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)

A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)

A= \(\overline{\left(...0\right)}\)

Vì A có tận cùng là 0 nên \(A⋮5\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

Ký hiệu $\text{BSn}$ là bội số của số $n$

CM $A\vdots 7$

Ta có:

$36^{38}-1=(35+1)^38}-1=\text{BS35}+1-1=\text{BS35}=\text{BS7}\vdots 7$

$41^{43}+1=(42-1)^{43}+1=\text{BS42}-1+1=\text{BS42}=\text{BS7}\vdots 7$

Cộng theo vế:

$A=36^{38}+41^{43}\vdots 7(*)$

CM $A\vdots 11$

\(36^{38}-3^{38}=(33+3)^{38}-3^{38}=\text{BS33}+3^{38}-3^{38}=\text{BS33}=\text{BS11}\vdots 11\)

\(41^{43}+3^{43}=(44-3)^{43}+3^{43}=\text{BS44}-3^{43}+3^{43}=\text{BS44}=\text{BS11}\vdots 11\)

Cộng theo vế:

\(A+3^{43}-3^{38}\vdots 11\)

\(\Leftrightarrow A+3^{38}(3^5-1)\vdots 11\Leftrightarrow A+242.3^{38}\vdots 11\)

Mà $242.3^{38}=11.22.3^{38}\vdots 11$ nên $A\vdots 11(**)$

Từ $(*); (**)$ mà $(7,11)=1$ nên $A\vdots 77$ (đpcm)

29 tháng 3 2020

36^38+41^33
= 36^33 . 36^5 + 41^33
= 36^33 . 36^5 + 36^33 - 36^33 + 41^33
= 36^33(36^5+ 1) - (36^33 - 41^33)
= 77.Q1 - 77.Q2
=> chia hết cho 77