K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

=(a+b) [a2-2ab+b2+ab]

=(a+b)[a2+b2-2ab+ab]

=(a+b)(a2+b2-ab)

=a3+ab2-a2b+a2b+b3-ab2

=a3+ab2-ab2-a2b+a2b+b3

=a3+b3

23 tháng 7 2017

( a+ b) ((a -b )2 + ab ) 

= ( a+ b) ( a2 -2ab + b2 + ab)

= ( a +b ) ( a2 - ab + b2)

= a3 + b3

24 tháng 6 2017

đây là một hằng đẳng thức nha bạn

=a3+b3+c3-3abc

24 tháng 6 2017

thank

2 tháng 8 2019

(a+b)*(a^2-ab+b^2)+(a-b)*(a^2+ab+b^2)

=a^3+b^3+a^3-b^3

=2a^3

tks cho mk nhe

2 tháng 1 2021

Với a + b + c = 0 , ta có :

\(A=\frac{ab}{a^2+b^2-c^2}\)\(+\frac{bc}{b^2+c^2-a^2}\)\(+\frac{ca}{c^2+a^2-b^2}\)

\(\Leftrightarrow\frac{ab}{\left(a+b\right)^2-2ab-c^2}\)\(+\frac{bc}{\left(b+c\right)^2-2ab-a^2}\)\(+\frac{ca}{\left(c+a\right)^2-2ca-b^2}\)

\(\Leftrightarrow A=\frac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}\)\(+\frac{bc}{\left(b+c-a\right)\left(b+c+a\right)-2ab}\)\(+\frac{ac}{\left(a+c+b\right)\left(c+a-b\right)-2ca}\)

\(\Leftrightarrow A=\frac{ab}{-2ab}\)\(+\frac{bc}{-2bc}\)\(+\frac{ac}{-2ac}\)

\(\Leftrightarrow A=\frac{-1}{2}\)\(+\frac{-1}{2}\)\(+\frac{-1}{2}\)

\(\Leftrightarrow A=\frac{-3}{2}\)

22 tháng 8 2018

nghe cái tên là hết mún giúp rồi

AI THẤY HAY KO NGẠI CHO TŨN MỘT TÍCH NHA

22 tháng 7 2017

(a + b)2 – (a – b)2

= [(a + b) – (a – b)].[(a + b) + (a – b)]

(Áp dụng HĐT (3) với A = a + b; B = a – b)

= 2b.2a

= 4ab

9 tháng 3 2022

chịu

1 tháng 8 2023

loading...

13 tháng 6 2018

\(\left(a-b\right)\left(a^2+ab+b^2\right)=a\left(a^2+ab+b^2\right)-b\left(a^2+ab+b^2\right)\)

                                                \(=a^3+a^2b+ab^2-a^2b-ab^2-b^3\)

                                                  \(=a^3-b^3\)

\(\left(a+b\right)\left(a^2-ab+b^2\right)=a\left(a^2-ab+b^2\right)+b\left(a^2-ab+b^2\right)\)

                                                \(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

                                                 \(=a^3+b^3\)

13 tháng 6 2018

(a-b)(a^2+ab+b^2)=a^3-b^3

(a+b)(a^2-ab+b^2)=a^3+b^3

30 tháng 8 2021

\(\frac{a+\sqrt{ab}}{b+\sqrt{ab}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{ab}}{b}\)