Cho phân số \(A=\frac{12n+1}{2n+3}\)
Tìm n để A là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
Để \(\frac{12n+1}{2n+3}\)là số nguyên thì \(\frac{17}{2n+3}\)là số nguyên
=> 2n+3\(\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng
2n+3 | -17 | -1 | 1 | 17 |
n | -10 | -2 | -1 | 7 |
\(A=\frac{12n+1}{2n+3}=\frac{6.\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
để \(A\in Zthi\frac{17}{2n+3}\in Z\)
và \(17⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(17\right)=1;17;-1;-17\)
\(\Rightarrow n\in\left(-1;7;-2;-10\right)\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
a) Để A là một phân số thì mẫu của \(A\ne0\) hay \(2n+3\ne0\)
\(\Leftrightarrow n\ne\dfrac{-3}{2}\)
b) Ta có : \(A=\dfrac{12n+1}{2n+3}\)
\(\Rightarrow A=\dfrac{12n+18-17}{2n+3}=\dfrac{12n+18}{2n+3}-\dfrac{17}{2n+3}\)
\(\Rightarrow A=\dfrac{6\left(2n+3\right)}{2n+3}-\dfrac{17}{2n+3}=6-\dfrac{17}{2n+3}\)
Để \(A\in Z\Leftrightarrow\dfrac{17}{2n+3}\in Z\)
\(\Leftrightarrow2n+3\in U\left(17\right)\)
mà \(U\left(17\right)=\left(1;-1;17;-17\right)\)
\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)
Vậy \(A\in Z\Leftrightarrow n\in\left(-1;-2;7;-10\right)\)
a)để A là 1 ps (n\(\in\)Z;n\(\ne\)5;1;9;-3;13;-7;33;-27)
b)\(\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-15}{2n+3}=\frac{6\left(2n+3\right)}{2n+3}-\frac{15}{2n+3}\in Z\)
=>15 chia hết 2n+3
=>2n+3\(\in\){1,-1,3,-3,5,-5,15,-15}
=>n\(\in\){5;1;9;-3;13;-7;33;-27}
Cho \(A=\frac{12n+5}{2n+3}=\frac{6\left(2n+3\right)-13}{2n+3}=\frac{6\left(2n+3\right)}{2n+3}-\frac{13}{2n+3}\in Z\)
Để \(A\in Z\Rightarrow13⋮\left(2n+3\right)\)hay \(2n+3\inƯ\left(13\right)\)
Ta có :
\(Ư\left(13\right)\in\left\{\pm1;\pm13\right\}\Rightarrow2n+3\in\left\{\pm1;\pm13\right\}\)
\(2n+3\) | \(n\) |
\(1\) | \(-1\) |
\(-1\) | \(-2\) |
\(13\) | \(5\) |
\(-13\) | \(-8\) |
Vậy để A nguyên \(\Rightarrow n\in\left\{-1;-2;5;-8\right\}\)
b) Để A là số nguyên => 12n+1\(⋮\)2n+3
Do 2n+3\(⋮\)2n+3 => 12n+18\(⋮\)2n+3
=> 12n+18-(12n+1)\(⋮\)2n+3
hay 17\(⋮\)2n+3
=>2n+3\(\in\){1;17;-1;-17}
Vậy n\(\in\){-1;7;-2;-10}
a) Để A là ps thì: \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)
b) \(A=\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2x+3}\)
Vậy để \(A\in Z\) thì \(2n+3\inƯ\left(17\right)\)
Mà Ư(17)={1;-1;17;-17}
Ta có bảng sau:
2n+3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -9 |
Vậy x={ -9;-2;-1;7}
Mình thắc mắc là: tại sao 2n+3... -17 á.Làm sao mà = -9 được. 2n+3= -17 thì
2n= -17-3
2n=-20
n= -20:2
n= -10
Vậy n= -10 chứ
A=\(\frac{12n+1}{2n+3}=\frac{12n+18-18+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}\)
=> A=6-\(\frac{17}{2n+3}\)
Để A nguyên thì 17 chia hết cho 2n+3 => 2n+3={-17; -1; 1; 17}
+/ 2n+3=-17 => n=-10
+/ 2n+3=-1 => n=-2
+/ 2n+3=1 => n=-1
+/ 2n+3=17 => n=7
ĐS: n={-10; -2; -1; 7}