Bài 18. Cho hình vuông ABCD, E là một điểm nằm trong hình vuông sao cho EBC [ =
ECB [ = 15o
, và F là một điểm nằm ngoài hình vuông sao cho F DC [ = F CD [ = 60o
.
Chứng minh:
1. Tam giác AED là tam giác đều.
2. Ba điểm B, E, F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Trong hình vuông ABCD dựng tam giác EMB đều.
MBA^=ABC^−CBE^−EBM^=90o−15o−60o=15oMBA^=ABC^−CBE^−EBM^=90o−15o−60o=15o
Dễ dàng c/m đc:
ΔΔ CEB=ΔΔ BMA (c.g.c)
\RightarrowBMA^=BEC^=150oBMA^=BEC^=150o
\RightarrowBMA^=EMA^=150oBMA^=EMA^=150o
\Rightarrow
ΔΔ EMA=ΔΔ BMA (c.g.c)
\Rightarrow AE=AB
Tương tự c/m đc DE=DC
\Rightarrow DE=AE(1)
Dễ dàng c/m đc DAE^=60o(2)DAE^=60o(2)
Từ (1) và (2) \Rightarrow Tam giác AED đều.
Do tam giác FCD đều nên FC = DC = CB. Do đó tam giác BCF cân tại C nên \(\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}=\dfrac{180^o-150^o}{2}=15^o=\widehat{EBC}\).
Vậy B, E, F thẳng hàng.
Trúc Giang Bạn cần giải thích đoạn nào vậy?
Tam giác BCF cân tại C nên \(\widehat{FBC}=\widehat{BFC}\).
Do đó \(\widehat{FBC}+\widehat{BFC}+\widehat{FCB}=180^o\Leftrightarrow\widehat{FCB}+2\widehat{FBC}=180^o\Leftrightarrow\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}\).
Do đó \(\widehat{FBC}=\widehat{EBC}\) mà E, F cùng thuộc 1 nửa mf bờ BC nên E, B, F thẳng hàng.
Vì t/g FDC là t/g đều nên DF=DC=FC
Mà DC=AD=AB=BC suy ra FC=BC
Suy ra t/g FCB cân tại C =>góc CFB=góc CBF (1)
Mặt khác có: góc FCB =góc DCB + góc DCF = 900 + 600 =1500
Suy ra : góc CFB + góc CBF =300 (2)
Từ (1) và (2) suy ra : góc CFB=góc CBF =150 (3)
Theo bài ra ta có : góc EBC =150 (4)
Từ (3) và (4) suy ra 3 diểm B ,E ,F thẳng hàng
vì tam giác ABE đều nên góc ABE = AEB = 600
suy ra goc EBC = 90 - 30 = 600
vì tam giác BFC đều nên goc FBC = FCB = 60o
Ta có tam giác EBF cân tại B (vì BE =BF ) và goc EBF = EBC + CBF = 60+30 = 90o
suy ra goc BEF = \(\frac{180-90}{2}\)=45o
ta có goc AEF = AEB + BEF = 60 + 45 = 105o
ta có tam giac AED cân tại A(vì AD = AE) và goc EAD = 30o nên goc AED = \(\frac{180-30}{2}\)= 75o
Ta có goc AED + goc AEF = 75 + 105 = 180o
suy ra D, E, F thẳng hàng
Giải thích các bước giải:
Xét 2 tam giác ABE và ADF
AB= AD
BE= DF
Góc ADF= gÓC ABE=90⁰
=> Tam giác ABE= Tam giác ADF( C.G.C)
=> AE= AF ( 2 cạnh tương ứng)
Tứ giác AEHF có
G Là giao điểm 2 đường chéo
AG= HG
EG=FG
Hơn nữa Có 2 cạnh kề bằng nhau
AE= AF
=> tứ giác AEHF là hình vuông
Ta có góc ECA= góc ACF= góc FCH( Nhìn canhn AE=AF=FH
=> Góc ECF= góc ECA+ góc ACH=90⁰
Góc ACH= góc ACF+góc FCH
mà góc FCH= góc ECA
=> Góc ACH= góc ACF+góc FCH=90⁰
=> tam giác ACH vuông tại C
EF thay đổi nhưng G là trọng tâm EF k thay đổi
Bài 1:
Do E là hình chiếu của D trên AB:
=) DE\(\perp\)AB tại E
=) \(\widehat{DE\text{A}}\)=900
Do F là hình chiếu của D trên AC:
=) DF\(\perp\)AC
=) \(\widehat{DFA}\)=900
Xét tứ giác AEDF có :
\(\widehat{D\text{E}F}\)=\(\widehat{E\text{A}F}\)=\(\widehat{DFA}\) (cùng bằng 900)
=) Tứ giác AEDF là hình chữ nhật
Xét hình chữ nhật AEDF có :
AD là tia phân giác của \(\widehat{E\text{A}F}\)
=) AEDF là hình vuông