Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔICD có \(\widehat{CID}+\widehat{ICD}+\widehat{IDC}=180^0\)
=>\(\widehat{ICD}+\widehat{IDC}=180^0-115^0=65^0\)
=>\(\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=65^0\)
=>\(\widehat{ADC}+\widehat{BCD}=130^0\)
Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{BCD}+\widehat{ADC}=360^0\)
=>\(\widehat{A}+\widehat{B}=360^0-130^0=230^0\)
mà \(\widehat{A}-\widehat{B}=50^0\)
nên \(\widehat{A}=\dfrac{230^0+50^0}{2}=140^0\)
\(\widehat{A}-\widehat{B}=50^0\)
=>\(140^0-\widehat{B}=50^0\)
=>\(\widehat{B}=140^0-50^0=90^0\)
a) Áp dụng định lý về tổng 4 góc trong tứ giác , ta được:
\(\widehat{C}+\widehat{D}=360^0-\left(90^0+90^0\right)=180^0\)
hay \(2\widehat{D}+\widehat{D}=180^0\Leftrightarrow3\widehat{D}=180^0\Leftrightarrow\widehat{D}=60^0\)
Từ đó suy ra \(\widehat{C}=60^0.2=120^0\)
a: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-\widehat{B}=40^0\)
b: \(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{CDA}+\widehat{HAD}=90^0\)
mà \(\widehat{BAD}=\widehat{HAD}\)
nên \(\widehat{CAD}=\widehat{CDA}\)