K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 8 2021

a.

ĐKXĐ: ...

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{5}-2}\right)^{x-1}=\left(\sqrt{5}-2\right)^{\dfrac{x-1}{x+1}}\)

\(\Leftrightarrow\left(\sqrt{5}-2\right)^{1-x}=\left(\sqrt{5}-2\right)^{\dfrac{x-1}{x+1}}\)

\(\Leftrightarrow1-x=\dfrac{x-1}{x+1}\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

b.

ĐKXĐ: \(\left\{{}\begin{matrix}x+3>0\\x^2+3x>0\end{matrix}\right.\) \(\Rightarrow x>3\)

\(log_{x^2+3x}\left(x+3\right)=1\)

\(\Rightarrow x+3=x^2+3x\)

\(\Rightarrow x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\left(loại\right)\end{matrix}\right.\)

6 tháng 2 2022

Áp dụng công thức: \(A\left(x\right).B\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}A\left(x\right)=0\\B\left(x\right)=0\end{matrix}\right.\)

a) \(PT\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)

b) \(PT\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)

Vậy: \(S=\left\{3;20\right\}\)

c) Vì \(x^2+1\ge1>0\forall x\)

\(\Rightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

d) \(PT\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)

a: =>3x-2=0 hoặc 4x+5=0

=>x=2/3 hoặc x=-5/4

b: =>(x-3)(x+20)=0

=>x=3 hoặc x=-20

c: =>4x+2=0

hay x=-1/2

d: =>2x+7=0 hoặc x-5=0 hoặc 5x+1=0

=>x=-7/2 hoặc x=5 hoặc x=-1/5

23 tháng 7 2021

a) ĐKXĐ: \(x^2+3x\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\le-3\end{matrix}\right.\).

PT \(\Leftrightarrow10-\left(x^2+3x\right)=3\sqrt{x^2+3x}\). (*)

Đặt \(\sqrt{x^2+3x}=a\ge0\)

\((*)\Leftrightarrow a^2+3a-10=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+5\right)=0\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\).

Với \(a=2\Rightarrow\sqrt{x^2+3x}=2\Leftrightarrow x^2+3x-4=0\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\).

Vậy x = 1; x = -4

 

30 tháng 3 2021

6x2-4x2-1=0

2x2-1=0

2x2=1

X=1/4

30 tháng 3 2021

\(a,3\left(x^2+x^2\right)-2\left(x^2+x\right)-1=0\)

\(\Leftrightarrow4x^2-2x-1=0\)

\(\Delta^'=1+4=5\)

vì \(\Delta^'>0=>\)phường trình có 2 nghiệm phân biệt

\(\left\{{}\begin{matrix}x_1=\dfrac{1+\sqrt{5}}{4}\\x_2=\dfrac{1-\sqrt{5}}{4}\end{matrix}\right.\)

b, \(\left(x^2-4x+2\right)^2+x^2-4x-4=0\)

\(\Leftrightarrow x^4-8x^3+20x^2-16x+4+x^2-4x-4=0\)

\(\Leftrightarrow x^4-8x^3+21x^2-20x=0\)

 

 

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

NV
21 tháng 7 2021

b.

ĐKXĐ: \(x\ge-1\)

\(\sqrt{\left(x+1\right)\left(x+35\right)}-14\sqrt{x+35}+84-6\sqrt{x+1}=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+35}-14\right)-6\left(\sqrt{x+35}-14\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-6\right)\left(\sqrt{x+35}-14\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=6\\\sqrt{x+35}=14\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
21 tháng 7 2021

a. ĐKXĐ: \(-1\le x\le1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a+2a^2=-b^2+b+3ab\)

\(\Leftrightarrow\left(2a^2-3ab+b^2\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a+1=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\4x+5+4\sqrt{x+1}=1-x\left(1\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow4\sqrt{x+1}=-4-5x\) \(\left(x\le-\dfrac{4}{5}\right)\)

\(\Leftrightarrow16\left(x+1\right)=25x^2+40x+16\)

\(\Leftrightarrow25x^2+24x=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{24}{25}\end{matrix}\right.\)

6 tháng 4 2020

câu a, b, c dễ mà. Bạn áp dụng 7 hằng đẳng thúc là làm đc thoii!!

vd: a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Rightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=\left(3x+2\right)\left(x-1\right)\left(x+1\right)\)

\(\Rightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left(3x+2\right)\left(x+1\right)[\left(3x-2\right)-\left(x-1\right)]=0\)

\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\) (bạn phá ngoặc ra rồi tính là ra bước này)

\(\Leftrightarrow3x+2=0\) hoặc \(x+1=0\) hoặc \(2x-1=0\) ( đến đây bạn chia làm 3 trường hợp r tự tính nhé)

Chúc bạn học tốt!!

NV
6 tháng 4 2020

d/

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

e/

\(\Leftrightarrow x^3+x^2-6x-x^2-x+6=0\)

\(\Leftrightarrow x\left(x^2+x-6\right)-\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)