K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

a,Ta có D= (1/3+2x+1/3-2x):1/3+2x

=2/3:1/3+2x

=2+2x

=2(x+1)

b, Từ câu a ta có

D=2(x+1)

Với x=3

=>2(x+1)

=2.4=8

KL

21 tháng 7 2017

a,Ta có D= (1/3+2x+1/3-2x):1/3+2x

=2/3:1/3+2x

=2+2x

=2(x+1)

b, Từ câu a ta có

D=2(x+1)

Với x=3

=>2(x+1)

=2.4=8

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

11 tháng 11 2021

sao câu 1 hoài v ạ.Còn câu 2,3 nữa á.

\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)

\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)

\(\Leftrightarrow12x-9=29x-145\)

\(\Leftrightarrow12x-9-29x+145=0\)

\(\Leftrightarrow-17x+136=0\)

\(\Leftrightarrow-17x=-136\)

\(\Leftrightarrow x=8\left(tm\right)\)

Vậy \(S=\left\{8\right\}\)

 

\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)

\(\Rightarrow2x-1=2\left(5-3x\right)\)

\(\Leftrightarrow2x-1=10-6x\)

\(\Leftrightarrow2x-1-10+6x=0\)

\(\Leftrightarrow8x-11=0\)

\(\Leftrightarrow8x=11\)

\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)

Vậy \(S=\left\{\dfrac{11}{8}\right\}\)

 

\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)

\(\Rightarrow4x-5=3x-2\)

\(\Leftrightarrow4x-5-3x+2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\left(tm\right)\)

Vậy \(S=\left\{3\right\}\)

 

\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)

\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)

\(\Rightarrow15x+25=0\)

\(\Leftrightarrow15x=-25\)

\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)

Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)

 

 

 

17 tháng 1 2023

\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)

\(\Leftrightarrow12x-9-29x+145=0\)

\(\Leftrightarrow-17x=-136\)

\(\Leftrightarrow x=8\)

\(2,\dfrac{2x-1}{5-3x}=2\)

\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)

\(\Leftrightarrow2x-1-10+6x=0\)

\(\Leftrightarrow8x=11\)

\(\Leftrightarrow x=\dfrac{11}{8}\)

\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)

\(\Leftrightarrow4x-5-2x+2+2x=0\)

\(\Leftrightarrow4x=3\)

\(\Leftrightarrow x=\dfrac{3}{4}\)

\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)

\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)

\(\Leftrightarrow15x=-25\)

\(\Leftrightarrow x=-\dfrac{5}{3}\)

6 tháng 9 2018

Gõ mệt k bạn.

1)

a)(2x+y)(4x2-2xy+y2)

b)a2+ab+b2

2)B

3)B

4)B

5) đề sai khỏi làm

6 tháng 9 2018

Bài 1 :
a) ( 2x )3 + y3 = ( 2x + y ) .( 4x2 - 2xy + y2 )

b) ( a - b ) .( a2 + ab + b2 ) = a3 - b3

2) Chọn B

3) Chọn A

4) Chọn B

5) Chọn D

17 tháng 1 2023

\(1,\left(dk:x\ne0,-1,4\right)\)

\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)

\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)

\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)

\(\Leftrightarrow-x=-44\)

\(\Leftrightarrow x=44\left(tm\right)\)

\(2,\left(đk:x\ne4\right)\)

\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)

\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)

\(\Leftrightarrow28-12-6x-9+5x-20=0\)

\(\Leftrightarrow-x=13\)

\(\Leftrightarrow x=-13\left(tm\right)\)

17 tháng 1 2023

bn ơi ktra lại câu 2 giúp mk đc ko 

2 tháng 9 2018

a) (x+2y)2=x2+4xy+4y2

b) (a-3b)2=a2- 6ab+9b2

2 tháng 9 2018

bài 1 : điền vào chỗ chấm để đk khẳng định đúng :

a) (.x..+2y...)2=x2+..4y.+4y2

b) (.a..-.3b..)2=a2-6ab+.9b2..

c) (.m..+.\(\frac{1}{2}\)..)2=.m2..+m+1/4

d) 25a2-..\(\frac{1}{4}b\).=(.5a..+1/2b)(..5a..-1/2b)

e)(.2x...+.1..)^2 = 4x^2 +.4x..+1

g)(2-x)(.4..+.2x..+.x2..)=8-x^3

h) 16a^2 - ..9. = (..4a.+3)(..4a.-3)

f)25 - ..30y.+9y^2=(..5.+...3y.)^2

a: \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{x}{x^2-2x+1}-\dfrac{1}{x^2-1}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x\left(x+1\right)-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{x^2+x-x+1}{x-1}\)

\(=\dfrac{1-x}{x-1}=-1\)

b: \(\dfrac{x}{6-x}+\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x^2+6x}\)

\(=\dfrac{x}{6-x}+\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}\)

\(=\dfrac{x}{6-x}+\dfrac{x^2-x^2+12x-36}{x-6}\cdot\dfrac{1}{2\left(x-3\right)}\)

\(=\dfrac{x}{6-x}+\dfrac{12\left(x-3\right)}{2\left(x-3\right)\left(x-6\right)}\)

\(=\dfrac{x}{6-x}+\dfrac{6}{x-6}=\dfrac{-x+6}{x-6}=-1\)

30 tháng 9 2023

Bài 1:

Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{2x-2}\\v=\dfrac{1}{y-1}\end{matrix}\right.\) (ĐK: \(x,y\ne1\))  

Hệ trở thành:

\(\Leftrightarrow\left\{{}\begin{matrix}u-v=2\\3u-2v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3u-3v=6\\3u-2v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-v=5\\u-v=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=2+-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=-3\end{matrix}\right.\)

Trả lại ẩn của hệ pt:

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y-1}=-5\\\dfrac{1}{2x-2}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-1=-\dfrac{1}{5}\\2x-2=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x=\dfrac{5}{6}\end{matrix}\right.\left(tm\right)\)