a)Cho tam giác ABC vuông tại A, biết AB=4cm; BC=5cm, Tonhs cosC+TanB
b) Cho tam giác ABC vuông tại A, có AB=5cm,BC=10cm. Tính sinC và số đo góc B
c) Cho tam giác ABC vuông tại A, biết cosB=8cm. hãy tính các tỉ số lượng giác của góc C. E c.ơn ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì tam giác abc vuông tại a, ta có
bc2 = ab2 + ac2
bc2 = 32 + 42
bc = căn của 25
bc = 5
chu vi tam giác abc là:
3 + 4 + 5 = 12(cm)
xét tam giác ABC vuông tại A đường cao AH , áp dụng đinh lí Pytago ta có
\(AB^2+AC^2=BC^2< =>BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
ta có: \(AH.BC=AB.AC\)(hệ thức lượng tam giác vuông)
=>
\(AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}=2,4cm\)
Xét ΔABC có
BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}=\dfrac{4}{5}\)
hay \(AB=\dfrac{4}{5}BC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2\cdot\dfrac{9}{25}=9^2=81\)
\(\Leftrightarrow BC^2=225\)
hay BC=15cm
\(\Leftrightarrow AB=\dfrac{4}{5}BC=12\left(cm\right)\)
Ta có: \(AC=AD+DC\)
⇔ \(AC=4+5\)
⇔ \(AC=9\) ( cm )
Áp dụng hệ thức lượng giác vào △ ABC, ta có:
\(AB^2=AD.AC\) ⇔ \(AB^2=4.9=36\) ⇔ \(AB=6\) ( cm )
Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
⇔ \(BC^2=6^2+9^2\)
⇔ \(BC^2=117\)
⇒ \(BC=\sqrt{117}=3\sqrt{13}\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
a, Áp dụng định lý Pitago:
`AB^2 + AC^2 = BC^2`
`=> 25 + AC^2 = 169`
`=> AC^2 = 144`
`=> sqrt 144 = 12`.
b. Áp dụng định lý Pytago ta có:
`AB^2 + AC^2 = BC^2`
`16 + 49 = BC^2`
`BC^2 = 65`
`BC = sqrt 65`.
Áp dụng định lí Pitago trong tam giác ABC vuông tại A
AC = BC2 + AB2
= 132 + 52
= \(\sqrt{194}\) = 14 cm
Áp dụng định lí Pitago trong tam giác ABC cân tại A
BC = AB2 + AC2
= 42 + 72
= \(\sqrt{65}\) = 8 cm
Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?