1 chứng minh rằng\(\overline{ab}+\overline{cd}\) chia hết cho 11 thì\(\overline{abcd}\) chia hết cho 11
2 cho 2 só tự nhiên \(\overline{abc},\overline{deg}\) dều chia 11 dư 5 chứng minh rằng số \(\overline{abcdeg}\) chia hết cho 11
ai nhanh, đúng mk tc
ai giúp mk mk tc cho 3 cái
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )