\(\left(\dfrac{1}{3}\right)^{2x-1}\)\(=\dfrac{1}{243}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(\sqrt{3}\right)^x=243\)
=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)
=>\(\dfrac{1}{2}\cdot x=5\)
=>x=10
b: \(0,1^x=1000\)
=>\(\left(\dfrac{1}{10}\right)^x=1000\)
=>\(10^{-x}=10^3\)
=>-x=3
=>x=-3
c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
=>\(\left(0,2\right)^{x+3}< 0,2\)
=>x+3>1
=>x>-2
d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)
=>2x+1<-2
=>2x<-3
=>\(x< -\dfrac{3}{2}\)
e: \(5^{x-1}+5^{x+2}=3\)
=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)
=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)
=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)
a: =>x-1/2=1/3
=>x=5/6
b: =>|2x-1|=x+1
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x-1-x-1\right)\left(2x-1+x+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x-2\right)\left(3x\right)=0\end{matrix}\right.\)
hay \(x\in\left\{2;0\right\}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{5}>\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{3}{5}< -\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x>1\\\dfrac{1}{2}x< \dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{2}{5}\end{matrix}\right.\)
Lời giải:
a.
$(\frac{-1}{3})^3.x=\frac{1}{81}=(\frac{-1}{3})^4$
$\Rightarrow x=(\frac{-1}{3})^4: (\frac{-1}{3})^3=\frac{-1}{3}$
b.
$2^2.16> 2^x> 4^2$
$\Rightarrow 2^2.2^4> 2^x> (2^2)^2$
$\Rightarrow 2^6> 2^x> 2^4$
$\Rightarrow 6> x> 4$
$\Rightarrow x=5$ (với điều kiện $x$ là số tự nhiên nhé)
c.
$9.27< 3^x< 243$
$3.3^3< 3^x< 3^5$
$\Rightarrow 3^4< 3^x< 3^5$
$\Rightarrow 4< x< 5$
Với $x$ là stn thì không có số nào thỏa mãn.
a: \(2^{x^2-1}=256\)
=>\(2^{x^2-1}=2^8\)
=>\(x^2-1=8\)
=>\(x^2=9\)
=>\(x\in\left\{3;-3\right\}\)
b: \(3^{x^2+3x}=81\)
=>\(3^{x^2+3x}=3^4\)
=>\(x^2+3x=4\)
=>\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
c: \(2^{x^2-5x}=64\)
=>\(2^{x^2-5x}=2^6\)
=>\(x^2-5x=6\)
=>\(x^2-5x-6=0\)
=>(x-6)(x+1)=0
=>\(\left[{}\begin{matrix}x-6=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)
d: \(\left(\dfrac{1}{3}\right)^x=243\)
=>\(\left(\dfrac{1}{3}\right)^x=3^5=\left(\dfrac{1}{3}\right)^{-5}\)
=>x=-5
e: \(\left(\dfrac{1}{3}\right)^{x+5}=3^{2x+1}\)
=>\(3^{-x-5}=3^{2x+1}\)
=>-x-5=2x+1
=>-3x=6
=>x=-2
a: =>x=(-2/3)^5:(-2/3)^2=(-2/3)^3=-8/27
b: =>x*(-1/3)^3=(-1/3)^4
=>x=-1/3
d: =>3x-2=-3
=>3x=-1
=>x=-1/3
a.\(3^{x-1}=243\)
\(3^x:3^1=243\)
\(3^x=729\)
\(\Leftrightarrow3^6=729\)
\(\Leftrightarrow x=6\)
b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x=3\)
Câu b tính đến đây rồi không mò đc x nữa.
Ta chứng minh 2 bất đẳng thức phụ sau: với x, y, z dương thì:
\(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\left(1\right)\)
\(\left(1+x\right)\left(1+y\right)\left(1+z\right)\ge\left(1+\sqrt[3]{xyz}\right)^3\left(2\right)\)
+ Chứng minh BĐT (1), sử dụng BĐT AM - GM:
\(x^4+x^4+y^4+z^4\ge4x^2yz\)
\(y^4+y^4+x^4+z^4\ge4xy^2z\)
\(z^4+z^4+x^4+y^4\ge4xyz^2\)
Cộng dồn lại ta có: \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
+ Chứng minh BĐT (2). Ta có:
\(\left(1+x\right)\left(1+y\right)\left(1+z\right)=1+x+y+z+xy+yz+xyz\ge1+3\sqrt[3]{xyz}+3\sqrt[3]{x^2y^2z^2}+xyz=\left(1+\sqrt[3]{xyz}\right)^3\)
Bây giờ ta quay lại chứng minh BĐT ở đề.
BĐT cần chứng minh tương đương với BĐT sau:
\(\sqrt[4]{\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4}\ge\sqrt[4]{3}+\dfrac{\sqrt[4]{243}}{2+abc}\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)
Sử dụng BĐT (1) ta có:
\(\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Sử dụng BĐT (2) và BĐT AM - GM ta có:
\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\left(3+\dfrac{3}{\sqrt[3]{abc}}\right)\)
\(\Rightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(1+\dfrac{1}{\sqrt[3]{abc.1.1}}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)
Vậy BĐT đã được chứng minh. Đẳng thức xảy ra <=> a = b = c.
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
4, \(\Leftrightarrow4x+4+9\left(2x+1\right)=4x+6\left(x+1\right)+7+12x\)
\(\Leftrightarrow22x+13=22x+13\)vậy pt có vô số nghiệm
5, \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\Rightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow8x=25\Leftrightarrow x=\dfrac{25}{8}\)
6, \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\Rightarrow6x-6+3x-3=12-8\left(x-1\right)\)
\(\Leftrightarrow9x-9=20-8x\Leftrightarrow17x=29\Leftrightarrow x=\dfrac{29}{17}\)
Lời giải:
$(\frac{1}{3})^{2x-1}=\frac{1}{243}=(\frac{1}{3})^5$
$\Rightarrow 2x-1=5$
$\Rightarrow 2x=6$
$\Rightarrow x=3$
\(\left(\dfrac{1}{3}\right)^{2x-1}=\dfrac{1}{243}\)
\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)
=> \(2x-1=5\)
\(2x=6\)
\(x=3\)