K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

dễ thấy pq⋮2pq⋮2

nếu p=2 thì 14+q,2q+1114+q,2q+11 là số nguyên tố
nếu q chia 3 dư 1 thì 14+q chia hết cho 3

nếu q chia 3 dư 2 thì 2q+11 chia hết cho 3

từ đó suy ra q=3

nếu q=2 thì 7p+2 và 2p+11 là số nghuyên tố

tương tự trên ta có p=3

3 tháng 4 2018

Vì pq +11 là số nguyên tố \(\Rightarrow\)pq +11 là số lẻ \(\Rightarrow\)pq là số chẵn \(\Rightarrow\)\(⋮\)2 hoặc q\(⋮\)2

  1. p\(⋮\)2 mà q là số nguyên tố \(\Rightarrow\)q = 2 

thay p = 2 vào 7p +q ta đc 14+ q mà 7p +q là số nguyên tố \(\Rightarrow\)14+q là số nguyên tố

 \(\Rightarrow\)14+q ko chia hết cho 3 mà 14 chia 3 dư 2 \(\Rightarrow\)\(⋮\)3 hoặc q chia 3 dư 2

  • q chia 3 dư 2 \(\Rightarrow\)q có dạng 3k+2 (k là số tự nhiên)

thay q=3k+2;p=2 vào pq +11 ta đc

2(3k+2)+11=6k+4+11=6k+15=3(2k+5)\(⋮\)3 và 3(2k+5) > 3 (KTM vì pq +11 là số nguyên tố)

  • \(⋮\)3\(\Rightarrow\)q có dạng 3a(a là số tự nhiên) 

mà q là số nguyên tố \(\Rightarrow\)q =1

2. chứng minh tương tự

đúng thì k nha

19 tháng 3 2018

Gúp mình nhanh lẹ nhá AI NHANH K CHO

DD
7 tháng 1 2021

Nếu cả \(p,q\)đều là số lẻ thì \(pq+11\)là số chẵn nên không thể là số nguyên tố. 

Nếu \(p=2\):

\(q+14\)\(2q+11\)đều là số nguyên tố. 

Với \(q=3\)thỏa mãn. 

Với \(q>3\)thì \(q=3n+1\)hoặc \(q=3n+2\).

\(q=3n+1\)thì \(q+14=3n+15⋮3\).

\(q=3n+2\)thì \(2q+11=2\left(3n+2\right)+11=6n+15⋮3\).

Nếu \(q=2\):

\(7p+2\)\(2p+11\)đều là số nguyên tố. 

Xét các trường hợp của \(p\)tương tự trường hợp \(p=2\).

Kết luận: có các trường hợp thỏa mãn là \(\left(p,q\right)\in\left\{\left(2,3\right),\left(3,2\right)\right\}\)

25 tháng 12 2018

À chờ mình xíu

25 tháng 12 2018

Vi pq + 11 là số nguyên tố => Lẻ và 11 là số lẻ => pq chẵn => p hoặc q bằng 2 

Nếu p = 2 

=> 7p + q = 7.2 + q = 14 + q 

q sẽ có 3 dạng là : 3k ; 3k+1;3k+2 

Nếu q = 3k => p = 3 => 7p + q = 17 ; pq + 11 = 17 là số nguyên tố

       q=3k + 1 => 7p + q = 3k + 15 chia hết cho 3 là số nguyên tố 

       q = 3k + 2 =>pq + 11 = 6k + 15 chia hết cho 3 là số nguyên tố 

Vậy q = 3 ; p = 2 

VÀ TH q = 2 bn tự xét nha 

15 tháng 12 2018

Nhận thấy p; q≥3p; q≥3 vì p=2;q=2p=2;q=2 không thỏa mãn.
Nếu pq+11pq+11 là số nguyên tố thì nó phải là số lẻ do nó là số nguyên tố >2>2
Suy ra ít nhất11 trong22 sốpp và q bằng22 (số nguyên tố chẵn)
Giả sử p=2p=2 khi đó
  7p+q=7.2+q=14+q7p+q=7.2+q=14+q
               -Nếu q=2q=2thì 7p+q=7.2+2=167p+q=7.2+2=16(loại)
               -Nếu q=3q=3thì pq+11=2.3+11=17pq+11=2.3+11=17(thỏa mãn)
                                              7p+q=7.2+3=17   7p+q=7.2+3=17 (thỏa mãn)
               -Nếu q=3k+1  (k∈N)q=3k+1  (k∈N) thì 7p+q=14+3k+1=3(k+5)7p+q=14+3k+1=3(k+5)(loại)
              - Nếu q=3k+2  (k∈N)q=3k+2  (k∈N) thì pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)(loại)
\Rightarrow p=2; q=3Nhận thấy p; q≥3p; q≥3 vì p=2;q=2p=2;q=2 không thỏa mãn.
Nếu pq+11pq+11 là số nguyên tố thì nó phải là số lẻ do nó là số nguyên tố >2>2
Suy ra ít nhất11 trong22 sốpp và q bằng22 (số nguyên tố chẵn)
Giả sử p=2p=2 khi đó
  7p+q=7.2+q=14+q7p+q=7.2+q=14+q
               -Nếu q=2q=2thì 7p+q=7.2+2=167p+q=7.2+2=16(loại)
               -Nếu q=3q=3thì pq+11=2.3+11=17pq+11=2.3+11=17(thỏa mãn)
                                              7p+q=7.2+3=17   7p+q=7.2+3=17 (thỏa mãn)
               -Nếu q=3k+1  (k∈N)q=3k+1  (k∈N) thì 7p+q=14+3k+1=3(k+5)7p+q=14+3k+1=3(k+5)(loại)
              - Nếu q=3k+2  (k∈N)q=3k+2  (k∈N) thì pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)(loại)
suy ra p=2; q=3

7 tháng 2 2020

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2

10 tháng 8 2016

Bài này dễ nè :

* xét p và q thuộc dạng : 3k ; 3k + 1 ; 3k+2

rồi thay vào nha

10 tháng 8 2016

p = 2; q = 3

Cái này thì mình phải thử, p và q chỉ trong phạm vi 10 thôi.