Cho tam giác ABC. Gọi D, E lần lượt là trung điểm của AB, AC.
a, Trên tia của ED lấy điểm F sao cho EF=ED. Chứng minh rằng AF=DC
b. Chứng minh rằng DE=\(\frac{1}{2}\)BC, DE song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
a: Xét ΔEAI và ΔECD có
EA=EC
góc AEI=góc CED
EI=ED
=>ΔEAI=ΔECD
=>AI=CD
b: ΔEAI=ΔECD
=>góc EAI=góc ECD
=>AI//CD
c: Xét ΔDAI và ΔBDC có
DA=BD
AI=DC
DI=BC
=>ΔDAI=ΔBDC
d: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
nên DE là đường trung bình
=>DE=1/2BC và ED//BC
a) Xét ΔAEF và ΔCED có
AE=CE(E là trung điểm của AC)
\(\widehat{AEF}=\widehat{CED}\)(hai góc đối đỉnh)
EF=ED(gt)
Do đó: ΔAEF=ΔCED(c-g-c)
⇒AF=CD(hai cạnh tương ứng)
b) Xét ΔABC có
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒DE//BC và \(DE=\dfrac{1}{2}BC\)(Định lí 2 về đường trung bình của tam giác)
Ta có hình vẽ:
a/ Xét tam giác ADE và tam giác EFC có:
DE = EF (GT)
góc AED = góc FEC (đối đỉnh)
AE = EC (GT)
=> tam giác ADE = tam giác EFC (c.g.c)
=> AD = CF (2 cạnh tương ứng)
Ta có: AD = DB (GT)
AD = CF (đã chứng minh trên)
=> DB = CF (1)
Ta có: tam giác ADE = tam giác EFC
=> góc DAE = góc ECF (2 góc tương ứng)
MÀ 2 góc này đang ở vị trí so le trong
=> AD // CF
Vì A,D,B thẳng hàng => DB // CF
=> góc BDC = góc DCF (so le trong) (2)
Ta có: DC: cạnh chung (3)
Từ (1),(2),(3) =>tam giác BDC = tam giác DCF
=> góc FDC = góc DCB (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> DF // BC (đpcm)
b/ Ta có: tam giác BDC = tam giác DCF
=> DF = BC (2 cạnh tương ứng) (1)
Mà theo giả thuyết EF = ED tức DE = EF = \(\frac{1}{2}\)DF (2)
Từ (1),(2) => DE = \(\frac{1}{2}\)BC
a) đề sai nhé bn, sửa BD thành BC
Xét t/g AED và t/g CEF có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, t/g AED = t/g CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong nên EC // AD hay EC // AB
Nối đoạn CD
Xét t/g BDC và t/g FCD có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, t/g BDC = t/g FCD (c.g.c)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong nên DF // BC (đpcm)
b) t/g BDC = t/g FCD (câu a)
=> BC = FD (2 cạnh tương ứng)
Mà DE = EF = 1/2 BC suy ra DE = 1/2 BC (đpcm)
(tự vẽ hình)
a, Xét tam giác AED vs tam giác CEFcó:
AE=EC(gt)
DE=EF(gt)
góc AED=góc FEC (đối đỉnh)
=> 2 tam giác bằng nhau (c.g.c)
=>AD=FC(tương ứng)
b,Vì tam giác AED=CEF(cmt)
=> góc AED = góc FEC tương ứng. mà 2 góc ở vị trí so le trong nên => AD//FC
=>AB//FC tương ứng
c, dễ tự CM
a)Xét \(\Delta DEC\)và\(\Delta FEA\)có:
EC=AE(E là trung điểm của AC)
\(\widehat{CED}=\widehat{AEF}\)(2 góc đối đỉnh)
DE=FE(gt)
=>\(\Delta DEC=\Delta FEA\left(c-g-c\right)\)
=>FA=DC(2 cạnh tương ứng)
b)Vì \(\Delta DEC=\Delta FEA\)=>\(\widehat{FAE}=\widehat{ECD}\)
Mà 2 góc này ở vị trí so le trong=>FA//DC
=>\(\widehat{FAD}=\widehat{CDB}\)(2 góc đồng vị)
Xét \(\Delta ADF\)và\(\Delta DBC\)có:
FA=DC(theo phần b)
\(\widehat{FAD}=\widehat{CDB}\)(cmt)
AD=DB(D là trung điểm của AB)
=>DF=BC ; \(\widehat{ADF}=\widehat{DBC}\)
mà \(DF=2DE\) ; Mà 2 góc này ở vị trí đồng vị
=>\(BC=2DE\) ; =>DE//BC
=>DE=\(\frac{1}{2}BC\)
Vậy DE=\(\frac{1}{2}\)BC;DE//BC