So sánh các cặp số sau:
a)6 và \(2\sqrt[3]{26}\)
b)\(2\sqrt[3]{6}\) và \(\sqrt[3]{47}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(2=1+1=1+\sqrt{1}\)
Mà: \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\)
\(\Rightarrow1+\sqrt{1}< \sqrt{2}+1\)
\(\Rightarrow2< \sqrt{2}+1\)
b) Ta có:
\(1=2-1=\sqrt{4}-1\)
Mà: \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\sqrt{4}-1>\sqrt{3}-1\)
\(\Rightarrow1>\sqrt{3}-1\)
c) Ta có:
\(10=2\cdot5=2\sqrt{25}\)
Mà: \(25< 31\Rightarrow\sqrt{25}< \sqrt{31}\)
\(\Rightarrow2\sqrt{25}< 2\sqrt{31}\)
\(\Rightarrow10< 2\sqrt{31}\)
d) Ta có:
\(-12=-3\cdot4=-3\sqrt{16}\)
Mà: \(16>11\Rightarrow\sqrt{16}>\sqrt{11}\)
\(\Rightarrow-3\sqrt{16}< -3\sqrt{11}\)
\(\Rightarrow-12< -3\sqrt{11}\)
a: \(2^{\dfrac{6}{3}}=2^2\)
b: \(2^{\dfrac{6}{3}}=2^2=4\)
\(\sqrt[3]{2^6}=\sqrt[3]{64}=4\)
=>\(2^{\dfrac{6}{3}}=\sqrt[3]{2^6}\)
tham khảo
a) Do \(0,85< 1\) nên hàm số \(y=0,85^x\) nghịch biến \(\mathbb{R}\).
Mà \(0,1>-0,1\) nên \(0,85^{0,1}< 0,85^{-0,1}\).
b) Do \(\pi>1\) nên hàm số \(y=\pi^x\) đồng biến trên \(\mathbb{R}\).
Mà \(-1,4< -0,5\) nên \(\pi^{-1,4}< \pi^{-0,5}\).
c) \(^4\sqrt{3}=3^{\dfrac{1}{4}};\dfrac{1}{^4\sqrt{3}}=\dfrac{1}{3^{\dfrac{1}{4}}}=3^{-\dfrac{1}{4}}\).
Do \(3>1\) nên hàm số \(y=3^x\) đồng biến trên \(\mathbb{R}\).
Mà \(\dfrac{1}{4}>-\dfrac{1}{4}\) nên \(3^{\dfrac{1}{4}}>3^{-\dfrac{1}{4}}\Leftrightarrow^4\sqrt{3}>\dfrac{1}{^4\sqrt{3}}\).
a) \(1=\sqrt{1}< \sqrt{2}\)
b) \(2=\sqrt{4}>\sqrt{3}\)
c) \(6=\sqrt{36}< \sqrt{41}\)
d) \(7=\sqrt{49}>\sqrt{47}\)
e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)
f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)
g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)
h) \(\sqrt{3}>0>-\sqrt{12}\)
i) \(5=\sqrt{25}< \sqrt{29}\)
\(\Rightarrow-5>-\sqrt{29}\)
\(a,\sqrt{42}=\sqrt{3\cdot14}>\sqrt{3\cdot12}=6\\ \sqrt[3]{51}=\sqrt[3]{17}< \sqrt[3]{3\cdot72}=6\\ \Rightarrow\sqrt{42}>\sqrt[3]{51}\\ b,16^{\sqrt{3}}=4^{2\sqrt{3}}\\ 18>12\Rightarrow3\sqrt{2}>2\sqrt{3}\Rightarrow4^{3\sqrt{2}}>4^{2\sqrt{3}}\\ \Rightarrow4^{3\sqrt{2}}>16^{\sqrt{3}}\)
\(c,\left(\sqrt{16}\right)^6=16^3=4^6=4^2\cdot4^4=4^2\cdot16^2\\ \left(\sqrt[3]{60}\right)^6=60^2=4^2\cdot15^2\\ 4^2\cdot16^2>4^2\cdot15^2\Rightarrow\sqrt{16}>\sqrt[3]{60}\Rightarrow0,2^{\sqrt{16}}< 0,2^{\sqrt[3]{60}}\)
a) Ta có: \({\Delta _1}:3\sqrt 2 x + \sqrt 2 y - \sqrt 3 = 0 \Leftrightarrow \sqrt 2 \left( {3\sqrt 2 x + \sqrt 2 y - \sqrt 3 } \right) = 0 \Leftrightarrow 6x + 2y - \sqrt 6 = 0\)
Do đó hai đường thẳng trùng nhau.
b) Ta có: \(\frac{1}{{\sqrt 3 }} = \frac{{ - \sqrt 3 }}{{ - 3}} \ne \frac{2}{2}\), do đó hai đường thẳng song song với nhau.
c) Ta có: \(\frac{1}{3} \ne \frac{{ - 2}}{1}\), do đó hai đường thẳng cắt nhau.
Trả lời:
a) ta có: 2 = √4
Vì 4 > 3 nên √4 > √3
Vậy 2 > √3
b) Ta có: 6 = √36
Vì 36 < 41 nên √36 < √41
Vậy 6 < √41
c) ta có 7 = √49
Vì 49 > 47 nên √49 > √47
Vậy 7 > √47
a) \(2=\sqrt{4}>\sqrt{3}\)
b) \(6=\sqrt{36}< \sqrt{41}\)
c) \(7=\sqrt{49}>\sqrt{47}\)
2/
a) Ta có:
\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)
Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b) Ta có:
\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)
\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)
Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)
3/
a)ĐKXĐ: \(x\ne1;x\ge0\)
b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)
\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)
\(A=1^2-\left(\sqrt{x}\right)^2\)
\(A=1-x\)
a) \(6=\sqrt[3]{6^3}=\sqrt{216}>\sqrt[3]{208}=2\sqrt[3]{26}\)
b) \(2\sqrt[3]{6}=\sqrt[3]{2^3.6}=\sqrt[3]{48}>\sqrt[3]{47}\)