K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Áp dụng TC DTSBN ta có :

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Ta có :\(\frac{a}{b+c}=\frac{1}{2}\)

\(\Leftrightarrow2a=b+c\)

\(\Rightarrow a=\frac{b+c}{2}\) (dpcm)

25 tháng 11 2018

\(a^2+b^2+c^2+2ab-2ac-2bc=a^2+b^2\)

\(\Rightarrow\left(a+b-c\right)^2=a^2+b^2\)

\(\Rightarrow\hept{\begin{cases}a^2=\left(a+b-c\right)^2-b^2=\left(a+b-c-b\right)\left(a+b-c+b\right)=\left(a-c\right)\left(a+2b-c\right)\\b^2=\left(a+b-c\right)^2-a^2=\left(a+b-c-a\right)\left(a+b-c+a\right)=\left(b-c\right)\left(2a+b-c\right)\end{cases}}\)

\(a^2+\left(a-c\right)^2=\left(a-c\right)\left(a+2b-c\right)+\left(a-c\right)^2\)

\(=\left(a-c\right)\left(a+2b-c+a-c\right)=2\left(a-c\right)\left(a+b-c\right)\)

\(b^2+\left(b-c\right)^2=\left(b-c\right)\left(2a+b-c\right)+\left(b-c\right)^2\)

\(=\left(b-c\right)\left(2a+b-c+b-c\right)=2\left(b-c\right)\left(a+b-c\right)\)

Vậy \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{2\left(a-c\right)\left(a+b+c\right)}{2\left(b-c\right)\left(a+b+c\right)}=\frac{a-c}{b-c}\)

29 tháng 12 2016

Ta có: 
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³ 
=abc(1/a³ + 1/b³ + 1/c³) 
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên) 
=abc.3/(abc)=3 

tk nha bạn

thank you bạn

(^_^)

24 tháng 12 2021

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

Khi đó:

\(\dfrac{a}{b}=1\Rightarrow a=b\left(1\right)\)

\(\dfrac{b}{c}=1\Rightarrow b=c\left(2\right)\)

\(\dfrac{c}{a}=1\Rightarrow c=a\left(3\right)\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow a=b=c\)