Tìm x, biết:
\(\left(8x-1\right)^{2x+1}=5^{2x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x\left(8x-1\right)^2\cdot\left(4x-1\right)=9\)
\(\Leftrightarrow\left(8x-1\right)^2\cdot\left(8x^2-2x\right)=9\)
\(\Leftrightarrow\left(64x^2-16x+1\right)\left(8x^2-2x\right)-9=0\)
\(\Leftrightarrow512x^4-128x^3-128x^3+32x^2+8x^2-2x-9=0\)
\(\Leftrightarrow512x^4-256x^3+40x^2-2x-9=0\)
\(\Leftrightarrow256x^3\left(2x-1\right)+40x^2-20x+18x-9=0\)
\(\Leftrightarrow256x^3\left(2x-1\right)+20x\left(2x-1\right)+9\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(256x^3+20x+9\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(256x^3+64x^2-64x^2-16x+36x+9\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[64x^2\left(4x+1\right)-4x\left(4x+1\right)+9\left(4x+1\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(4x+1\right)\left(64x^2-4x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\4x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{4}\right\}\)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x=2x^3-16\)
<=>\(8x=-16\)
<=>\(x=-2\)
i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)
<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(6x^2-2x-10=0\)
<=>\(3x^2-x-5=0\)
<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>\(x=\dfrac{1}{5}\)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)
<=>\(8x=-16\)
<=>x=-2
i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(9x+6=0\)
<=>x=\(\dfrac{-2}{3}\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>x=\(\dfrac{1}{5}\)
\(\Leftrightarrow\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\1-2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Hoàng Ngọc Anh đề là tìm x chứ ko phải tìm nghiệm, làm sao cho VP = 0 được!
1, \(5x\left(x-1\right)=x-1\Rightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\Rightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)
2, \(2x\left(12x-5\right)-8x\left(3x-1\right)=30\)
\(\Rightarrow24x^2-10x-24x^2+8x=30\) \(\Rightarrow-2x=30\Rightarrow x=-15\)
3, \(3x\left(3-2x\right)+6x\left(x-1\right)=15\) \(\Rightarrow9x-6x^2+6x^2-6x=15\Rightarrow3x=15\Rightarrow x=5\)
4, \(x\left(x-3\right)+x-3=0\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
\(\left(8x-1\right)^{2x+1}=5^{2x+1}\)
\(\Leftrightarrow8x-1=5\)
\(\Leftrightarrow8x=6\)
\(\Leftrightarrow x=\frac{6}{8}=\frac{3}{4}\)