Xét tính đúng sai của các mệnh đề sau:
(1) Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ;
(2) Bình phương của mọi số thực đều không âm;
(3) Có số nguyên cộng với chính nó bằng 0;
(4) Có số tự nhiên n sao cho 2n – 1 = 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với n = 32, ta có các mệnh đề P, Q khi đó là:
P: “Số tự nhiên 32 chia hết cho 16”;
Q: “Số tự nhiên 32 chia hết cho 8”;
Mệnh đề P ⇒ Q: “Nếu số tự nhiên 32 chia hết cho 16 thì số tự nhiên 32 chia hết cho 8”.
Đây là mệnh đề đúng vì 32 chia hết cho 16 và 8.
b) Với n = 40, ta có các mệnh đề P, Q khi đó là:
P: “Số tự nhiên 40 chia hết cho 16”;
Q: “Số tự nhiên 40 chia hết cho 8”;
Mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề Q ⇒ P: “Nếu số tự nhiên 40 chia hết cho 8 thì số tự nhiên 40 chia hết cho 16”.
Mệnh đề đảo này là mệnh đề sai. Vì 40 chia hết cho 8 nhưng 40 không chia hết cho 16.
a) Mệnh đề P đúng, vì: \(\left| x \right| = \left\{ \begin{array}{l}x\quad \;\;(x \ge 0)\\ - x\quad (x < 0)\end{array} \right.\) nên \(\left| x \right| \ge x\).
Mệnh đề Q sai vì chỉ có các số \( \pm \sqrt {10} \) có bình phương bằng 10, nhưng \(\sqrt {10} \) và \( - \sqrt {10} \) đều không là số tự nhiên.
Mệnh đề R đúng vì \(x = - 1 + \sqrt 2 \in \mathbb{R}\) thỏa mãn \({x^2} + 2x - 1 = 0.\)
b) Có thể viết lại các mệnh đề trên như sau:
P: “\(\forall x \in \mathbb{R},\;\left| x \right| \ge x\)”
Q: “\(\exists n \in \mathbb{N},{n^2} = 10\)”
R: “\(\exists x \in \mathbb{R},\;{x^2} + 2x - 1 = 0\)”
a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x\) là một số hữu tỉ \(x^2\) cũng là một số hữu tỉ". Mệnh đề đúng.
b) Mệnh đề đảo là " Nếu \(x^2\) là một số hữu tỉ thì \(x\) là một số hữu tỉ"
c) Chẳng hạn, với \(x=\sqrt{2}\) mệnh đề này sai
Mệnh đề phủ định của các mệnh đề trên là:
a) “Paris không phải là thủ đô của nước Anh”
b) “23 không phải là số nguyên tố”
c) “2021 không chia hết cho 3”
d) “Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm”.
+) Xét tính đúng sai:
a) “Paris là thủ đô của nước Anh” là mệnh đề sai.
“Paris không phải là thủ đô của nước Anh” là mệnh đề đúng.
b) “23 là số nguyên tố” là mệnh đề đúng.
“23 không phải là số nguyên tố” là mệnh đề sai.
c) “2021 chia hết cho 3” là mệnh đề sai.
“2021 không chia hết cho 3” là mệnh đề đúng.
d) “Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm” là mệnh đề đúng.
“Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm” là mệnh đề sai.
Lời giải:
$n^3-n=n(n^2-1)=n(n-1)(n+1)$ là tích của 3 số nguyên liên tiếp nên luôn chia hết cho $3$
Do đó mệnh đề $P$ đúng.
+) Mệnh đề phủ định của mệnh đề P là \(\overline P \): “5,15 không phải là một số hữu tỉ”
Mệnh đề P đúng, \(\overline P \) sai vì \(5,15 = \frac{{103}}{{20}} \in \mathbb{Q}\), là một số hữu tỉ.
+) Mệnh đề phủ định của mệnh đề Q là \(\overline Q \): “2 023 không phải là số chẵn” (hoặc “2 023 là số lẻ”)
Mệnh đề Q sai, \(\overline Q \) đúng vì 2 023 có chữ số tận cùng là \(3 \ne \left\{ {0;2;4;6;8} \right\}\), đo đó 2 023 không phải là số chẵn.
P: đúng
phủ định: "5,15 không phải số hữu tỉ"
Q: sai
Phủ định: "1023 không phải số chẵn"
(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x = 1\) không là số vô tỉ.
(2) “Bình phương của mọi số thực đều không âm” đúng;
(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;
(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.