chứng minh rằng nếu p là số nguyên tố thì:
A = 2.3.4...(p-3)(p-2) -1\(⋮p\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A được viết lại thành: \(A=\left(p-2\right)!-1⋮p\)
Theo định lí Wilson ta có: Cho p là số tự nhiên, p là số nguyên tố <=> \(\left(p-1\right)!+1⋮p\)
Nhân A với (p-1) ta có:
\(A\left(p-1\right)=\left(p-2\right)!.\left(p-1\right)-\left(p-1\right)=\left(p-1\right)!+1-p⋮p\)
Mà p - 1; p là 2 số tự nhiên liên tiếp nên chúng nguyên tố cùng nhau
=> \(A⋮p\).
a là bội của b → a = k.b (k € Z)
b là bội của a → b = k'.a (k' € Z)
vì a,b ≠ 0 nên ta nhân theo vế 2 đẳng thức trên
→ ab = k.k'.ba
→ 1 = k.k'
do k € Z , k' € Z → xảy ra 2 TH
Th1 : k = 1 và k' = 1 → a = b
Th2 : k = -1 và k' = -1 → a = -b
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
Vì a là bội của b => a=b.k ( \(k\in N\)*)
b là bội của a \(\Rightarrow b=ah=b.k.h\) (\(h\in N\)*)
TH1: k=0, h=0
-> b=a=-b
Th2: k khác 0, h khác 0 thì chỉ có thể là k=1;h=1 hoặc k=-1; h=-1
A=(p−2)!−1B=(p−2)!−1
Do (p−1,p)=1(p−1,p)=1 nên ta chứng minh (p−1).A=(p−1)!−(p−1)(p−1).A=(p−1)!−(p−1) chia hết cho pp (đúng theo định lí wilson)
Tham khảo cách chứng minh định lí này tại đây , đây , hoặc đây