Giải các phương trình sau:
a) \(\sqrt {x + 2} = x\)
b) \(\sqrt {2{x^2} + 3x - 2} = \sqrt {{x^2} + x + 6} \)
c) \(\sqrt {2{x^2} + 3x - 1} = x + 3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bình phương hai vế ta được
\(2{x^2} - 3x - 1 = 2x - 3\)
\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)
Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.
Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)
b) Bình phương hai vế ta được
\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)
Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.
Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)
c) \(\sqrt {x + 9} = 2x - 3\)(*)
Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)
Bình phương hai vế của (*) ta được:
\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)
d) \(\sqrt { - {x^2} + 4x - 2} = 2 - x\)(**)
Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)
Bình phương hai vế của (**) ta được:
\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)
a) \(\sqrt {{x^2} + 3x + 1} = 3\)
\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)
\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)
Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1} = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)
b) \(\sqrt {{x^2} - x - 4} = x + 2\)
\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x = - 8\\ \Rightarrow x = - \frac{8}{5}\end{array}\)
Thay \(x = - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4} = x + 2\) ta thấy thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = - \frac{8}{5}\)
c) \(2 + \sqrt {12 - 2x} = x\)
\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x} = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)
\( \Rightarrow x = - 2\) và \(x = 4\)
Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x} = x\) thì thấy chỉ có \(x = 4\) thỏa mãn
Vậy \(x = 4\) là nghiệm của phương trình đã cho.
d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10} \ge 0\forall x \in \mathbb{R}\)
\( \Rightarrow \sqrt {2{x^2} - 3x - 10} = - 5\) (vô lí)
Vậy phương trình đã cho vô nghiệm
a) \(\sqrt {3{x^2} - 4x - 1} = \sqrt {2{x^2} - 4x + 3} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}3{x^2} - 4x - 1 = 2{x^2} - 4x + 3\\ \Leftrightarrow {x^2} = 4\end{array}\)
\( \Leftrightarrow x = 2\) hoặc \(x = - 2\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị x=2; x=-2 thỏa mãn
Vậy tập nghiệm của phương trình là \(S = \left\{ { - 2;2} \right\}\)
b) \(\sqrt {{x^2} + 2x - 3} = \sqrt { - 2{x^2} + 5} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}{x^2} + 2x - 3 = - 2{x^2} + 5\\ \Leftrightarrow 3{x^2} + 2x - 8 = 0\end{array}\)
\( \Leftrightarrow x = - 2\) hoặc \(x = \frac{4}{3}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy chỉ có giá trị \(x = \frac{4}{3}\) thỏa mãn
Vậy tập nghiệm của phương trình là \(x = \frac{4}{3}\)
c) \(\sqrt {2{x^2} + 3x - 3} = \sqrt { - {x^2} - x + 1} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 3x - 3 = - {x^2} - x + 1\\ \Leftrightarrow 3{x^2} + 4x - 4\end{array}\)
\( \Leftrightarrow x = - 2\) hoặc \(x = \frac{2}{3}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị đều không thỏa mãn.
Vậy phương trình vô nghiệm
d) \(\sqrt { - {x^2} + 5x - 4} = \sqrt { - 2{x^2} + 4x + 2} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l} - {x^2} + 5x - 4 = - 2{x^2} + 4x + 2\\ \Leftrightarrow {x^2} + x - 6 = 0\end{array}\)
\( \Leftrightarrow x = - 3\) hoặc \(x = 2\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=2 thỏa mãn.
Vậy nghiệm của phương trình là x = 2.
a) \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \)
Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \) ta được
\(3{x^2} - 6x + 1 = - 2{x^2} - 9x + 1\)
\( \Leftrightarrow 5{x^2} + 3x = 0\)
\( \Leftrightarrow x\left( {5x + 3} \right) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(x = \frac{{ - 3}}{5}\)
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và \(x = \frac{{ - 3}}{5}\) đều thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;\frac{{ - 3}}{5}} \right\}\)
b) \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \)
Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \) , ta được
\(2{x^2} - 3x - 5 = {x^2} - 7\)
\( \Leftrightarrow {x^2} - 3x + 2 = 0\)
\( \Leftrightarrow x = 1\) hoặc \(\)\(x = 2\)
Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.
Vậy phương trình đã cho vô nghiệm.
a.
ĐKXĐ: \(x\ge2\)
\(\left(x+\sqrt{x}+1\right)\sqrt{x-2}=\left(x+1\right)^2-x\)
\(\Leftrightarrow\left(x+\sqrt{x}+1\right)\sqrt{x-2}=\left(x+\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x-2}=x-\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x-2}+\sqrt{x}=x+1\)
\(\Leftrightarrow2x-2+2\sqrt{x^2-2x}=x^2+2x+1\)
\(\Leftrightarrow x^2-2\sqrt{x^2-2x}+3=0\)
\(\Leftrightarrow\left(\sqrt{x^2-2x}-1\right)^2+2x+2=0\) (vô nghiệm do \(2x+2>0\))
Vậy pt đã cho vô nghiệm
b. ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow2x^2-3x+1+2\left(x-1\right)\sqrt{2x^2-3x+1}+x^2-2x-3=0\)
Đặt \(\sqrt{2x^2-3x+1}=t\ge0\)
\(\Rightarrow t^2+2\left(x-1\right)t+x^2-2x-3=0\)
\(\Delta'=\left(x-1\right)^2-\left(x^2-2x-3\right)=4\)
\(\Rightarrow\left[{}\begin{matrix}t=1-x-2=-x-1\\t=1-x+2=3-x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x^2-3x+1}=-x-1\left(x\le-1\right)\\\sqrt{2x^2-3x+1}=3-x\left(x\le3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x=0\left(vn\right)\\x^2+3x-8=0\left(x\le3\right)\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{-3\pm\sqrt{41}}{2}\)
\(a,\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\\ \Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x+3=1\end{matrix}\right.\Leftrightarrow x=-1\left(N\right)\)
\(b,\Leftrightarrow3x^2+3x-2\sqrt{x^2+x}=0\left(x\le-1;x\ge0\right)\\ \Leftrightarrow3x\left(x-1\right)-2\sqrt{x\left(x+1\right)}=0\\ \Leftrightarrow\sqrt{x\left(x+1\right)}\left(3\sqrt{x\left(x-1\right)}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\sqrt{x\left(x-1\right)}=\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x^2-x-\dfrac{4}{9}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\9x^2-9x-4=0\left(1\right)\end{matrix}\right.\)
\(\Delta\left(1\right)=81-4\left(-4\right)\cdot9=225\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{9-15}{18}\\x=\dfrac{9+15}{18}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-\dfrac{1}{3}\left(L\right)\\x=\dfrac{4}{3}\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{4}{3}\end{matrix}\right.\)
a) Bình phương hai vế của phương trình ta được:
\(2{x^2} - 6x + 3 = {x^2} - 3x + 1\)
Sau khi thu gọn ta được: \({x^2} - 3x + 2 = 0\). Từ đó tìm được \(x = 1\) hoặc \(x = 2\)
Thay lần lượt hai giá trị này của x vào phương trình ban đầu, ta thấy chỉ có \(x = 2\) thỏa mãn.
Vậy nghiệm của PT đã cho là \(x = 2\)
b) Bình phương hai vế của phương trình ta được:
\({x^2} + 18x - 9 = 4{x^2} - 12x + 9\)
Sau khi thu gọn ta được: \(3{x^2} - 30x + 18 = 0\). Từ đó tìm được \(x = 5 + \sqrt {19} \) hoặc \(x = 5 - \sqrt {19} \)
Thay lần lượt hai giá trị này của x vào phương trình ban đầu, ta thấy chỉ có \(x = 5 + \sqrt {19} \) thỏa mãn.
Vậy nghiệm của PT đã cho là \(x = 5 + \sqrt {19} \)
a) \(\sqrt {x + 2} = x\)
Điều kiện: \(x \ge 0\)
Bình phương 2 vế của phương trình ta được:
\(x + 2 = {x^2} \Leftrightarrow {x^2} - x - 2 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right.\)
b) \(\sqrt {2{x^2} + 3x - 2} = \sqrt {{x^2} + x + 6} \)
Bình phương 2 vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 3x - 2 = {x^2} + x + 6\\ \Leftrightarrow {x^2} + 2x - 8 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 4\end{array} \right.\end{array}\)
Thay vào bất phương trình \(2{x^2} + 3x - 2 \ge 0\) ta thấy cả 2 nghiệm đều thỏa mãn.
Vậy tập nghiệm là \(S = \left\{ { - 4;2} \right\}\)
c) \(\sqrt {2{x^2} + 3x - 1} = x + 3\)
Điều kiện: \(x + 3 \ge 0 \Leftrightarrow x \ge - 3\)
Bình phương 2 vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 3x - 1 = {\left( {x + 3} \right)^2}\\ \Leftrightarrow {x^2} - 3x - 10 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = - 2\left( {tm} \right)\\x = 5\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm là \(S = \left\{ { - 2;5} \right\}\)