K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

27 tháng 12 2018

Kho do mk se nghi

17 tháng 10 2020

\(hcmuop\underrightarrow{jjjjjjjjj}me\)

NV
27 tháng 12 2018

Áp dụng BĐT Min-cốp-xki:

\(A=\sqrt{\left(x+2\right)^2+2^2}+\sqrt{\left(1-x\right)^2+1^2}\ge\sqrt{\left(x+2+1-x\right)^2+\left(2+1\right)^2}=3\sqrt{2}\)

\(\Rightarrow A_{min}=3\sqrt{2}\) khi \(\left(x+2\right).1=2.\left(1-x\right)\Leftrightarrow x=0\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

15 tháng 6 2019

+) \(A=1+\sqrt{\left(x^2-2x+1\right)+7}=1+\sqrt{\left(x-1\right)^2+7}\ge1+\sqrt{0+7}=1+\sqrt{7}\)

Dấu "=" xảy ra <=> x-1=0 <=> x=1

Vậy \(minA=1+\sqrt{7}\)khi và chỉ khi x=1

+) \(B=5+\sqrt{5-6x-x^2}\)

ĐK: \(5-6x-x^2\ge0\)

\(B=5+\sqrt{5-6x-x^2}\ge5\)

Dấu "=" xảy ra  khi và chỉ khi \(5-6x-x^2=0\)tự giải tìm x !