K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x} = \frac{{50000 + 105x}}{x}\)

b) \(\mathop {\lim }\limits_{x \to  + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{50000 + 105x}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {\frac{{50000}}{x} + 105} \right)}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{50000}}{x} + 105} \right) = 0 + 105 = 105\)

Vậy khi số sản phẩm càng lớn thì chi phí trung bình để sản xuất một sản phẩm tối đa 105 (nghìn đồng). 

\(C'\left(x\right)=\left(\sqrt{5x^2+60}\right)'=\dfrac{\left(5x^2+60\right)'}{2\sqrt{5x^2+60}}\)

\(=\dfrac{10x}{2\sqrt{5x^2+60}}=\dfrac{5x}{\sqrt{5x^2+60}}\)

\(x'\left(t\right)=20\)

\(C'\left(t\right)=C'\left(x\right)\cdot x'\left(t\right)=\dfrac{100\left(2t+40\right)}{\sqrt{5\left(20t+40\right)^2+60}}\)

\(C'\left(4\right)=\dfrac{100\left(2\cdot4+40\right)}{\sqrt{5\left(80+40\right)^2+60}}\simeq44,7\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

a, Hàm chi phí biên là: 

\(C'\left(Q\right)=2Q+80\)

b, \(C'\left(90\right)=2\cdot90+80=260\left(USD\right)\) 

 Ý nghĩa: Chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 89 sản phẩm lên 90 sản phẩm là 260 (USD)

c, Chi phí sản xuất máy vô tuyến thứ 100 là:

\(C'\left(100\right)=2\cdot100+80=280\left(USD\right)\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Doanh thu khi bán Q sản phẩm là 170Q nghìn đồng.

Lợi nhuận khi bán Q sản phẩm là \(170Q - \left( {{Q^2} + 30Q + 3300} \right)\)\( =  - {Q^2} + 140Q - 3300\)(nghìn đồng)

Để không bị lỗ thì \( - {Q^2} + 140Q - 3300 \ge 0\left( 1 \right)\)

\(a =  - 1 < 0;\Delta ' = 1600\)

\( - {Q^2} + 140Q - 3300 = 0\) có 2 nghiệm phân biệt \({x_1} = 30,{x_2} = 110\)

(1)\( \Leftrightarrow \)\(30 \le x \le 110\)

Vậy để không bị lỗ thì số sản phẩm được sản suất phải nằm trong khoảng từ 30 đến 110 sản phẩm.

19 tháng 2 2019

Ta có x ∈ (0; 60000)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó, hàm số đạt cực tiểu tại x = 50000.

Nên x=50000 là số sản phẩm cần sản xuất mỗi ngày để tối thiểu chi phí.

Chọn C

11 tháng 12 2017

Chọn A.

Gọi x; y lần lượt là số phẩm loại A; B.

Theo đề bài ta có: 2000x + 4000y = 40 000 hay x + 2y = 20

Suy ra: x = 20 - 2y.

Ta có 

Xét hàm 

Tập xác định D = (0; 10).

Nhận xét:  nên dấu của y’ là dấu của biểu thức 

Do đó hàm số đạt giá trị lớn nhất khi y =  6 và x = 8

Vậy 

29 tháng 1 2018

Ta có  C ' x = 2 x 2 - 24 x + 70 x - 6 2

C ' x = 0 ⇔ x = 5 x = 7 So điều kiện x > 6, chọn x = 7

Vậy để tổng chi phí lớn nhất thì công ty cần cải tiến 7 đơn vị sản phẩm

Đáp án D

22 tháng 1 2017

Đáp án B

Thể tích của mỗi thỏi son hình trụ là:

V = π r 2 h = 20 , 25 π ⇔ r 2 h = 20 , 25 ⇔ h = 20 , 25 r 2

Ta có:

T = 60000 r 2 + 20000 r h = 60000 r 2 + 20000 r . 20 , 25 r 2 = 60000 r 2 + 405000 r

60000 r 2 + 202500 r + 202500 r ≥ 3 60000 r 2 . 202500 r . 202500 r 3 = 405000

Dấu “=” xảy ra khi:

60000 r 2 = 202500 r ⇔ r = 3 2 ⇒ h = 9 ⇒ r + h = 10 , 5 c m

23 tháng 2 2023

Theo đề bài, giá bán \(x\) sản phẩm là \(170x\) (nghìn đồng)

Để nhà sản xuất không bị lỗ thì \(P\left(x\right)\le170x\) \(\Leftrightarrow x^2+30x+3300\le170x\) \(\Leftrightarrow x^2-140x+3300\le0\) \(\Leftrightarrow\left(x-110\right)\left(x-30\right)\le0\)

Đặt \(f\left(x\right)=\left(x-110\right)\left(x-30\right)\). Ta lập bảng xét dấu:

\(x\) \(-\infty\)               \(30\)                  \(110\)                                \(+\infty\)
\(f\left(x\right)\)             \(+\)        \(0\)         \(-\)        \(0\)                 \(+\)

 Vậy \(f\left(x\right)\le0\Leftrightarrow x\in\left[30;110\right]\). Do đó, để nhà sản xuất không bị lỗ thì số sản phẩm được sản xuất trong đoạn \(\left[30;110\right]\).

 

 

 

 

 

17 tháng 3 2023

Khi bán hết  sản phẩm thì số tiền thu được là: 170� (nghìn đồng).

Điều kiện để nhà sản xuất không bị lỗ là 170�≥�2+30�+3300⇔�2−140�+3300≤0.

Xét �2−140�+3300=0⇒�=30 hoặc �=110.

Bảng xét dấu �(�)=�2−140�+3300:

!aaaaa + + xf(x)00 + 30110

Ta có: �2−140�+3300≤0⇔�∈[30;110].

Vậy nếu nhà sản xuất làm ra từ 30 đến 110 sản phẩm thì họ sẽ không bị lỗ.

25 tháng 3 2020

Giá của x sản phẩn là:

x ( 120 -x ) = - x2 +120x 

Lợi nhuận còn lại:

\(-x^2+120x-C\left(x\right)=-x^2+120x-x^2-5x-300=-2x^2+115x-300\)