K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Gọi unn là số tiền sau mỗi tháng ông An còn nợ ngân hàng.

Lãi suất mỗi tháng là 1% .

Ta có:

u1 = 1 000 000 000 đồng.

u2 = u1 + u1.1% - a = u1(1 + 1%) – a (đồng)

u3 = u1(1 + 1%) – a + [u1(1 + 1%) – a].1% – a = u1(1 + 1%)2 – a(1 + 1%) – a

...

un = u1(1 + 1%)n-1 – a(1 + 1%)n-2 – a(1 + 1%)n-3 – a(1 + 1%)n-4 – ... – a.

Ta thấy dãy a(1 + 1%)n-1; a(1 + 1%)n-3; a(1 + 1%)n-4; ...; a lập thành một cấp số nhân với số hạng đầu a1 = a và công bội q = 1 + 1% = 99% có tổng n – 2 số hạng đầu là:

\({S_{n - 2}} = \frac{{a\left[ {1 - {{\left( {99\% } \right)}^{n - 2}}} \right]}}{{1 - 99\% }} = 100a\left[ {1 - {{\left( {99\% } \right)}^{n - 2}}} \right]\).

Suy ra un = u1(1 + 1%)n-1 – 100a[1 – (99%)n-2].

Vì sau 2 năm = 24 tháng thì ông An trả xong số tiền nên n = 24 và u24 = 0. Do đó ta có:

u24 = u1(1 + 1%)23 – 100a[1 – (99%)22] = 0

⇔ 1 000 000 000.(99%) – 100a[1 – (99%)22] = 0

⇔ a = 40 006 888,25

Vậy mỗi tháng ông An phải trả 40 006 888,25 đồng.

2 tháng 6 2017

Đáp án D

7 tháng 7 2019

Chọn D

25 tháng 9 2018

Chọn D

Vay vốn trả góp: Vay ngân hàng số tiền là P đồng với lãi suất r% trên tháng. Sau đúng một tháng kể từ ngày vay, bắt đầu hoàn nợ; hai lần hoàn nợ cách nhau đúng một tháng, mỗi tháng hoàn nợ số tiền là X đồng và trả hết số tiền nợ sau đúng n tháng

2 tháng 11 2018

Chọn D

22 tháng 3 2018

25 tháng 5 2019

Đáp án là A

29 tháng 7 2019

Đáp án B

Áp dụng CT trả góp ta có m = 100 1 + 12 % 12 12 12 % 12 1 + 12 % 12 12 − 1 ≈ 0 , 885   triệu đồng

16 tháng 4 2018

Chọn D

18 tháng 10 2016

Đây là câu 21 của đề minh họa thị THPT QG 2017.

Lãi suất 12%/năm => lãi suất 1%/tháng.

Nếu còn nợ a đồng thì phải trả lãi 0,01 a cho 1 tháng.

Sau tháng đầu tiên, sau khi trả m đồng thì ông A còn  nợ là:

     (a + 0,01.a) - m = a. 1,01 - m

Sau tháng thứ hai, sau khi trả tiếp m đồng thì ông A còn nợ là:

   (a . 1,01 - m) . 1,01 - m

Sau tháng thứ ba, sau khi trả tiếp m đồng thì ông A còn nợ là:

    [(a. 1,01 - m) . 1,01 - m] . 1,01 - m

Con số nợ cuối cùng này phải bằng 0, suy ra:

   [(a. 1,01 - m) . 1,01 - m] . 1,01 - m = 0

=> \(m=\frac{a.1,01^3}{1,01^2+1,01+1}=\frac{a.1,01^3\left(1,01-1\right)}{1,01^3-1}=\frac{a.1,01^3.0,01}{1,01^3-1}\)

Thay a = 100 vào ta có:

  \(m=\frac{1,01^3}{1,01^3-1}\)