Câu A) (2x^2-3x+1) (x^2-5)-(x^2-x) (2x^2-x-10)=5. Tìm x thỏa mãn diều kiện
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, Để biểu thức A có nghĩa thì
\(2x+10\ne0\Rightarrow x\ne-5\)
\(x\ne0\)
\(2x^2+10x\ne0\Rightarrow x\ne0;x\ne-5\)
Vậy điều kiện của x là \(x\ne0;x\ne-5\)
b) Ta có:
\(A=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x^2+10x}\)
\(A=\frac{x\cdot\left(x^2+2x\right)+\left(x-5\right)\cdot\left(2x+10\right)+50-5x}{2x^2+10x}\)
\(A=\frac{x^3+4x^2-5x}{2x^2+10x}\)
\(A=\frac{x\cdot\left(x-1\right)\cdot\left(x+5\right)}{2x\cdot\left(x+5\right)}\)
\(A=\frac{x-1}{2}\)
Để A=1 thì ta có\(\frac{x-2}{2}=1\Leftrightarrow x-2=2\Leftrightarrow x=4\)
Vậy x=4 thì A=1
(x^2-2x+5) (x-2)=(x^2+x) (x-5).
<=>x3-2x2+5x-2x2+4x-10=x3+x2-5x2-5x
<=>x3-4x2+9x-10=x3-4x2-5x
<=>x3-4x2+9x-x3+4x2+5x=10
<=>14x=10
<=>x=5/7
(2x^2-3x+1) (x^2-5)-(x^2-x) (2x^2-x-10)=5
<=>2x4-3x3+x2-10x2+15x-5-(2x4-x3-10x2-2x3+x2+10x)=5
<=>2x4-3x3+x2-10x2+15x-5-2x4+x3+10x2+2x3-x2-10x=5
<=>5x-5=5
<=>5x=10
<=>x=2