K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt:

\(S=\frac{a^3+b^3+c^3+d^3}{a+b+c+d}=\frac{a^3}{a+b+c+d}+\frac{b^3}{a+b+c+d}+\frac{c^3}{a+b+c+d}+\frac{d^3}{a+b+c+d}\)

\(=\frac{a^4}{a^2+ab+ac+ad}+\frac{b^4}{ab+b^2+bc+bd}+\frac{c^4}{ac+bc+c^2+cd}+\frac{d^4}{ad+bd+cd+d^2}\)

áp dụng bất đẳng thức schwarts ta có:

\(S\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)}=\frac{\left(a^2+b^2+c^2+d^2\right)^2}{\left(a+b+c+d\right)^2}\)

áp dụng bất đẳng thức bunhicốpski ta có:

\(\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\ge\left(a+b+c+d\right)^2\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)

\(\Rightarrow S\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{4\left(a^2+b^2+c^2+d^2\right)}=\frac{a^2+b^2+c^2+d^2}{4}\ge\frac{4\sqrt[4]{a^2b^2c^2d^2}}{4}=\frac{4.1}{4}=1\)

\(\Rightarrow a^3+b^3+c^3+d^3\ge a+b+c+d\)

dấu bằng xảy ra khi a=b=c=d=1

Do \(0\le a,b,c\le1\)

nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)

Ta cũng có:

\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)

Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)

\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)

\(=3\)

Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)

 

12 tháng 2 2022

giúp mình câu hỏi này với ah.

25 tháng 8 2021

a+b+c+d=0 => a+d= -b-c;       (a+b)3=a3+b3+3ab(a+b) => a3+b3=(a+b)3-3ab(a+b)

a3+d3+b3+d3

=(a+d)3- 3ad(a+d)+ (b+c)3-3bc(b+c) (1)

Do a+d=-b-c nên pt (1) trở thành:

-(b+c)3-3ad(-b-c)+ (b+c)3-3bc(b+c)

=3ad(b+c)-3bc(b+c)

=3(b+c)(ad-bc) <đccm>

25 tháng 11 2017

Chọn A

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

$a+b+c=0\Rightarrow a+b=-c$

Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé. 

5 tháng 8 2023

Ta có:

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=-\left(c+d\right)^3+3ab\left(c+d\right)+\left(c+d\right)^3-3cd\left(c+d\right)\) (vì \(a+b=-\left(c+d\right)\))

\(=3\left(c+d\right)\left(ab-cd\right)\) 

Vậy đẳng thức được chứng minh.

17 tháng 1 2021

BĐT \(\Leftrightarrow a^3-b^3+a^2b-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)^2\ge0\) (luôn đúng do \(a\geq b\)).