Cho đa thức P(x) = ax2+bx+c và 2a+b=0 . Chứng tỏ rằng P(-1).P(3) <_0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s : Easy mà bạn :
Ta có :
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-\left(a-b+c\right)\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=4.0=0\)
\(\Rightarrow P\left(3\right)=P\left(-1\right)\)
\(\Rightarrow\)
\(P\left(3\right).P\left(-1\right)=P\left(3\right).P\left(3\right)=\left[P\left(3\right)\right]^2\ge0\)
\(\left(Đcpm\right)\)
\(a=1,b=6,c=1\)
\(5a-b+c=5-6+1=0\)
\(P\left(1\right).P\left(3\right)=\left(1.1^2+6.1+1\right).\left(1.3^2+6.3+1\right)>0?\)
Cho `x=0`
`=> f(0) = a.0^2 + b.0 + c`
`=> f(0) = c`
Mà tại `x=0` thì `f(x)` là số nguyên do đó `c` là số nguyên
Cho `x=1`
`=> f(1) = a.1^2 + b.1+c`
`=> f(1)= a+b+c` (1)
Mà tại `x=1` thì `f(x)` là số nguyên do đó a+b+c là số nguyên, mặt khác c là số nguyên nên `a+b` là số nguyên
Cho `x= -1`
`=> f(-1) = a.(-1)^2 + b.(-1)+c`
`=> f(-1) = a -b+c` (2)
Từ `(1)` và `(2)`
`=>f(1) + f(-1) = a+b+c + a-b+c`
`= 2a + 2c` là số nguyên do `f(1)` và `f(-1)` là những số nguyên
Mà `c` là số nguyên nên `2c` là số nguyên
`=> 2a` là số nguyên
Vậy `2a ; a+b ,c` là những số nguyên
\(P\left(2\right)=4a+2b+c=2\left(5a+b+2c\right)-6a-3c=-6a-3c\)
\(P\left(-1\right)=a-b+c=-\left(5a+b+2c\right)+6a+3c\)
\(\Rightarrow P\left(2\right).P\left(-1\right)=\left(-6a-3c\right)\left(6a+3c\right)=-\left(6a+3c\right)^2\le0\) (đpcm)
Thay x = 1 vào đa thức ax2 + bx + c, ta có:
a.12 + b.1 + c = a + b + c
Vì a + b + c = 0 nên a.12 + b.1 + c = a + b + c = 0
Vậy x = 1 là nghiệm của đa thức ax2 + bx + c khi a + b + c = 0
Thay x = 1 vào đa thức ax2 + bx + c, ta có:
a.12 + b.1 + c = a + b + c
Vì a + b + c = 0 nên a.12 + b.1 + c = a + b + c = 0
Vậy x = 1 là nghiệm của đa thức ax2 + bx + c khi a + b + c = 0
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
mk thấy đề bài của bn sai rồi
2a+b=0 ⇒ b=-2a
P(-1)=a(-1)2+(-2a).(-1)+c
=a+2a+c
=3a+c
P(3)=a.32+(-2a).3+c
=9a-6a+c
=3a+c
P(-1).P(3)
=(3a+c).(3a+c)
=(3a+c)2
Vì (3a+c)2≥0
⇒P(-1).P(3)≥0