Tìm x để biểu thức sau có giá trị nguyên
\(\frac{6x-5}{3x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{6x-5}{3x-1}=\frac{2\left(3x-1\right)-3}{3x-1}=2-\) \(\frac{3}{3x-1}\) có giá trị là 1 số nguyên
\(\Rightarrow3⋮3x-1\Rightarrow\left(3x-1\right)\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-\frac{2}{3};0;\frac{2}{3};\frac{4}{3}\right\}\)
Kết bn với Chiinh đi ạk
Để biểu thức có giá trị nguyên thì \(\frac{6x-5}{3x-1}\ge0\)
\(\Leftrightarrow6x-5\ge0\)
\(\Leftrightarrow6x\ge5\)
\(\Leftrightarrow x\ge\frac{5}{6}\)
Vậy khi \(x\ge\frac{5}{6}\)thì biểu thức đạt giá trị nguyên.
ta có \(\frac{3x^2+6x+5}{x+1}=\frac{3\left(x+1\right)^2+2}{x+1}=3\left(x+1\right)+\frac{2}{x+1}\)
do x nguyên nên 3(x+1) là số nguyên
do đó \(\frac{2}{x+1}\) phải là số nguyên hay x+1 là ước của 2
\(\Rightarrow\orbr{\begin{cases}x+1=\pm1\\x+1=\pm2\end{cases}\Rightarrow x\in\left\{-3,-2,0,1\right\}}\)
2. Câu hỏi của Hoàng Lê Như Ý - Toán lớp 6 - Học toán với OnlineMath
2/
Để 6x + 5/2x - 1 đạt giá trị nguyên thì:
6x + 5 chia hết cho 2x - 1
=> (6x - 3) + 8 chia hết cho 2x - 1
=> [3(2x - 1)] + 8 chia hết cho 2x - 1
Vì 2x - 1 chia hết cho 2x - 1
=> [3(2x - 1)] chia hết cho 2x - 1
=> 8 chia hết cho 2x - 1
Hay 2x - 1 thuộc Ư(8) = {1;-1;2;-2;4;-4;8;-8}
=> 2x thuộc {2;0;3;-1;5;-3;9;-7}
=> x thuộc {1;0;3/2;-1/2;5/2;-3/2;9/2;-7/2}
Mà x thuộc Z
Do đó: x thuộc {1;0}
*tk giúp mình nhá 😉*
ĐKXĐ : x2 - 6x + 9 \(\ne\)0
<=> x \(\ne\)3
a) A = 0
=> 3x2 - 11x + 6 = 0
<=> 3x2 - 9x - 2x + 6 = 0
<=> 3x(x - 3) - 2(x - 3) = 0
<=> (3x - 2)(x - 3) = 0
<=> \(\orbr{\begin{cases}x=\frac{2}{3}\left(tm\right)\\x=3\left(\text{loại}\right)\end{cases}}\)
Vậy x = 2/3 thì A = 0
b) Ta có A = \(\frac{3x^2-11x+6}{x^2-6x+9}=3+\frac{7x-21}{x^2-6x+9}=3+\frac{7}{x-3}\)
Để : A \(\inℤ\Leftrightarrow7⋮x-3\Leftrightarrow x-3\inƯ\left(7\right)\Leftrightarrow x-3\in\left\{1;7;-1;-7\right\}\)
Lập bảng xét các trường hợp
x - 3 | 1 | 7 | -1 | -7 |
x | 4(tm) | 10(tm) | 2(tm) | -4(tm) |
Vậy \(x\in\left\{4;10;2;-4\right\}\)thì A \(\inℤ\)
\(\frac{4x^2-6x+5}{2x-1}=2x-2+\frac{3}{2x-1}\)
Để biểu thức có giá trị nguyên thì \(\left(2x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Với 2x - 1 = 1 => 2x = 2 => x = 1
2x - 1 = -1 => 2x = 0 => x = 0
2x - 1 = 3 => 2x = 4 => x = 2
2x - 1 = -3 => 2x = -2 => x = -1
Vậy x = {1;0;2;-1}
Ta có : \(\frac{6x-5}{3x-1}=\frac{6x-2-3}{3x-1}=\frac{6x-2}{3x-1}-\frac{3}{3x-1}=\frac{2\left(3x-1\right)}{3x-1}-\frac{3}{3x-1}\) \(=3-\frac{3}{3x-1}\)
Để : \(\frac{6x-5}{3x-1}\in Z\) thì \(\frac{3}{3x-1}\in Z\)
\(\Rightarrow\) 3 chia hết cho 3x - 1
=> 3x - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
Để \(\frac{6x-5}{3x-1}\)là số nguyên thì 6x - 5 \(⋮\)3x - 1
Ta có :
6x - 5 \(⋮\)3x - 1
6x - 1 - 4 \(⋮\)3x - 1
Mà 6x - 1 \(⋮\)3x - 1
=> 4 \(⋮\)3x - 1
Sau đó tính 3x - 1 là được