Tìm tất cả số chính phương để \(M=\dfrac{x\sqrt{x}-8}{x-4\sqrt{x}+4}\) nhận giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M là số nguyên thì \(12\sqrt{x}+5⋮3\sqrt{x}-1\)
=>\(12\sqrt{x}-4+9⋮3\sqrt{x}-1\)
=>\(3\sqrt{x}-1\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(3\sqrt{x}\in\left\{2;0;4;10\right\}\)
=>\(\sqrt{x}\in\left\{0;\dfrac{2}{3};\dfrac{4}{3};\dfrac{10}{3}\right\}\)
mà x là số chính phương
nên x=0
\(M=\dfrac{12\sqrt{x}+5}{3\sqrt{x}-1}\)
\(M=\dfrac{12\sqrt{x}-4+9}{3\sqrt{x}-1}\)
\(M=\dfrac{4\left(3\sqrt{x}-1\right)+9}{3\sqrt{x}-1}\)
\(M=\dfrac{4\left(3\sqrt{x}-1\right)}{3\sqrt{x}-1}+\dfrac{9}{3\sqrt{x}-1}\)
\(M=4+\dfrac{9}{3\sqrt{x}-1}\)
M nguyên khi:
\(9\) ⋮ \(3\sqrt{x}-1\)
Mà: \(3\sqrt{x}-1\ge-1\)
\(\Rightarrow3\sqrt{x}-1\in\left\{1;-1;3;9\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};\dfrac{10}{3}\right\}\)
\(\Rightarrow x\in\left\{\dfrac{4}{9};0;\dfrac{16}{9};\dfrac{100}{9}\right\}\)
Mà: x là số chính phương nên:
x = 0
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(đk:x\ge0,x\ne1\right)\)
\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)
Để A nguyên thì: \(x+\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Mà \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow x+\sqrt{x}+1\in\left\{1;2\right\}\)
+ Với \(x+\sqrt{x}+1=1\)
\(\Leftrightarrow\sqrt[]{x}\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow x=0\left(tm\right)\left(do.\sqrt{x}+1\ge1>0\right)\)
+ Với \(x+\sqrt{x}+1=2\)
\(\Leftrightarrow\left(x+\sqrt{x}+\dfrac{1}{4}\right)=\dfrac{5}{4}\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\\sqrt{x}+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{5}-1}{2}\\\sqrt{x}=-\dfrac{\sqrt{5}+1}{2}\left(VLý\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{3-\sqrt{5}}{2}\left(tm\right)\)
Vậy \(S=\left\{1;\dfrac{3-\sqrt{5}}{2}\right\}\)
a) A= \(\dfrac{\sqrt{x}}{\sqrt{x-2}}-\dfrac{4}{x-2\sqrt{x}}=\dfrac{\sqrt{x}\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\sqrt{x}}=\dfrac{x+2\sqrt{x}}{x}\)
b) Ta có x >0 nên \(\sqrt{x}\) >0
<=> \(2\sqrt{x}\) > 0
<=> \(x+2\sqrt{x}\) > x
<=> \(\dfrac{x+2\sqrt{x}}{x}\) > \(\dfrac{x}{x}\)
hay A > 1
c)
\(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}\) đk: \(x\ge0,x\ne1\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}:\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}\right]-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}:\dfrac{\left(x+1\right)-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\left(\sqrt{x}+1\right)\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}.\dfrac{\left(\sqrt{x}-1\right)\left(x+1\right)}{\left(\sqrt{x}-1\right)^2}-\left(\sqrt{x}+1\right)\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}+1-\left(x-1\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
b)Để P<4 \(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}< 4\) \(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-4< 0\) \(\Leftrightarrow\dfrac{\sqrt{x}+2-4\left(\sqrt{x}-1\right)}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{6-3\sqrt{x}}{\sqrt{x}-1}< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-3\sqrt{x}>0\\\sqrt{x}-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}6-3\sqrt{x}< 0\\\sqrt{x}-1>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 2\\\sqrt{x}< 1\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}< 1\\\sqrt{x}>2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0\le x< 1\\x>4\end{matrix}\right.\)
Vậy...
c)\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\) \(=1+\dfrac{3}{\sqrt{x}-1}\)
Để P nguyên khi \(\dfrac{3}{\sqrt{x}-1}\) nguyên
\(x\in Z\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in Z\\\sqrt{x}\in I\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}-1\in Z\\\sqrt{x}-1\in I\end{matrix}\right.\)
Tại \(\sqrt{x}-1\in I\Rightarrow\dfrac{3}{\sqrt{x}-1}\notin Z\) (L)
Tại\(\sqrt{x}-1\in Z\) .Để \(\dfrac{3}{\sqrt{x}-1}\in Z\)
\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2;-2;4\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{0;2;4\right\}\) \(\Leftrightarrow x\in\left\{0;4;16\right\}\) (tm)
1) \(P=\dfrac{5-3\sqrt{x}}{\sqrt{x}-1}\left(đk:x\ge0,x\ne1\right)\)
\(=\dfrac{-3\left(\sqrt{x}-1\right)+2}{\sqrt{x}-1}=-3+\dfrac{2}{\sqrt{x}-1}\in Z\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do \(x\ge0,x\ne1\) và x là số chính phương
\(\Rightarrow x\in\left\{0;4;9\right\}\)
2) \(3x^2-5x+1=3\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)-\dfrac{13}{12}=3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\ge-\dfrac{13}{12}\)
\(\Rightarrow C=\dfrac{2022}{3x^2-5x+1}\le2022:\left(-\dfrac{13}{12}\right)=-\dfrac{24264}{13}\)
\(minC=-\dfrac{24624}{13}\Leftrightarrow x=\dfrac{5}{6}\)
Đáp án của toi:https://hoc24.vn/cau-hoi/tim-tat-ca-cac-gia-tri-cua-tham-so-m-de-bat-phuong-trinh-sau-co-nosqrt2xsqrt4-x-sqrt82x-x2le-m.920223129881
Đáp án của một bạn khác: https://hoc24.vn/cau-hoi/tim-tat-ca-cac-gia-tri-cua-tham-so-m-de-bat-phuong-trinh-sau-co-nosqrt2xsqrt4-x-sqrt82x-x2le-m.616555176629
ĐK: \(-2\le x\le4\)
Đặt \(\sqrt{2+x}+\sqrt{4-x}=t\left(\sqrt{6}\le t\le2\sqrt{3}\right)\)
\(\Rightarrow\sqrt{8+2x-x^2}=\dfrac{t^2-6}{2}\)
Bất phương trình tương đương:
\(t+\dfrac{t^2-6}{2}\le m\)
\(\Leftrightarrow f\left(t\right)=t^2+2t-6\le2m\)
Bất phương trình đã cho có nghiệm khi \(2m\ge minf\left(t\right)=f\left(\sqrt{6}\right)=2\sqrt{6}\)
\(\Leftrightarrow m\ge\sqrt{6}\)
Kết luận: \(m\ge\sqrt{6}\)
Đặt \(t=\sqrt{2+x}+\sqrt{4-x}\) (\(t\in\left[\sqrt{6};2\sqrt{3}\right]\) )
\(\Leftrightarrow t^2=6+2\sqrt{8+2x-x^2}\)
\(\Leftrightarrow\dfrac{t^2-6}{2}=\sqrt{8+2x-x^2}\)
Khi đó ta cần tìm m để bpt \(t-\dfrac{t^2-6}{2}\le m\) có nghiệm \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)
\(\Leftrightarrow-t^2+2t+6-2m\le0\) có nghiệm \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)
Đặt \(f\left(t\right)=-t^2+2t+6-2m\) , \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)
BBT
t-∞√62√31-∞f(t)f(1)2√6-2m-6+4√3-2m
TH1: \(maxf\left(t\right)\le0\) \(\Leftrightarrow f\left(1\right)\le0\) \(\Leftrightarrow7-2m\le0\) \(\Leftrightarrow m\ge\dfrac{7}{2}\) (I)
TH2: \(maxf\left(t\right)>0\Leftrightarrow7-2m>0\Leftrightarrow m< \dfrac{7}{2}\)
Để \(f\left(t\right)\le0\) có nghiệm \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{6}-2m\le0\\2\sqrt{6}-2m>0\ge-6+4\sqrt{3}-2m\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{6}\\\sqrt{6}>m\ge-3+2\sqrt{3}\end{matrix}\right.\)
Kết hợp với đk ta có:\(\left[{}\begin{matrix}\dfrac{7}{2}>m\ge\sqrt{6}\\\sqrt{6}>m\ge-3+2\sqrt{3}\end{matrix}\right.\) (II)
Từ (I) (II) ta có: \(m\in\left[-3+2\sqrt{3};+\infty\right]\)
ĐKXĐ: x>=0; x<>4
\(M=\dfrac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)^2}=\dfrac{x+2\sqrt{x}+4}{\sqrt{x}-2}\)
M nguyên khi \(x-2\sqrt{x}+4\sqrt{x}-8+12⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(\sqrt{x}\in\left\{3;1;4;0;5;6;8;14\right\}\)
=>\(x\in\left\{9;1;16;0;25;36;64;196\right\}\)