Cho các đơn thức: 2x6; -5x3; -3x5; x3; \(\dfrac{3}{5}{x^2}\); \( - \dfrac{1}{2}{x^2}\); 8; -3x. Gọi A là tổng của các đơn thức đã cho.
a) Hãy thu gọn tổng A và sắp xếp các hạng tử để được một đa thức.
b) Tìm hệ số cao nhất, hệ số tự do và hệ số của x2 của đa thức thu được.
a) A = 2x6 + (-5x3) + ( -3x5) + x3 + \(\dfrac{3}{5}{x^2}\)+(\( - \dfrac{1}{2}{x^2}\)) + 8 + ( -3x)
= 2x6 + ( -3x5) + [(-5x3) + x3 ]+ [\(\dfrac{3}{5}{x^2}\)+(\( - \dfrac{1}{2}{x^2}\))] + ( -3x) + 8
= 2x6 – 3x5 – 4x3 +\(\dfrac{1}{{10}}\)x2 – 3x + 8
b) Hệ số cao nhất: 2
Hệ số tự do: 8
Hệ số của x2 là: \(\dfrac{1}{{10}}\)