K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=10cm

C=AB+BC+AC=6+8+10=24(cm)

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

c: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có \(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

2: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3.6\left(cm\right)\)

3: Xét ΔBAC có BK là đường phân giác

nên \(\dfrac{AK}{KC}=\dfrac{AB}{BC}\)

mà \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

nên \(\dfrac{AK}{KC}=\dfrac{BH}{AB}\left(1\right)\)

Xét ΔAHC vuông tại H và ΔBHA vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\)

Do đó: ΔAHC\(\sim\)ΔBHA

Suy ra: \(\dfrac{AC}{AB}=\dfrac{AH}{BH}\)

=>BH/AH=AB/AC

hay \(\dfrac{BH}{AB}=\dfrac{AH}{AC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AK}{KC}=\dfrac{AH}{AC}\)

hay \(AK\cdot AC=AH\cdot KC\)

12 tháng 2 2022

Bài 4 : 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=35cm\)

Bài 5 : 

Theo định lí Pytago tam giác MNO vuông tại O

\(OM=\sqrt{MN^2-ON^2}=33cm\)

Bài 4: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{21^2+28^2}=35\left(cm\right)\)

Bài 5: 

\(OM=\sqrt{55^2-44^2}=33\left(cm\right)\)

12 tháng 5 2022

(Tự vẽ hình)

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Xét \(\Delta ABD\) và \(\Delta HBD\) có:

\(\widehat{BAD}=\widehat{BHD}=90^0\)

\(BD\) chung

\(\widehat{ABD}=\widehat{HBD}\) (tính chất phân giác)

\(\Rightarrow\Delta ABD=\Delta HBD\) (ch - gn)

c) Ta có \(\Delta ABD=\Delta HBD\Rightarrow AD=HD\)

Mà \(HD< DC\) (do \(\Delta HDC\) vuông tại \(H\))

\(\Rightarrow DA< DC\) 

12 tháng 5 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AC^2+AB^2}=10cm\)

b, Xét tam giác BAD và tam giác BHD có 

BD _ chung ; ^ABD = ^HBD ; ^BAD = ^BHD = 900

Vậy tam giác BAD = tam giác BHD ( ch-gn) 

19 tháng 3 2022

a, Xét tg AHB và tg AHC, có:

AB=AC(tg cân)

góc AHB= góc AHC(=90o)

góc B= góc C(tg cân)

=> tg AHB= tg AHC(ch-gn)

b,Xét tg BMH và tg CNH, có: 

góc B= góc C(tg cân)

BH=CH(2 cạnh tương ứng)

góc BMH= góc CNH(=90o)

=> tg BMH= tg CNH(ch-gn)

Xét tg AMH và tg ANH, có: 

AH chung.

góc AMH= góc ANH(=90o)

MH=HN(2 cạnh tương ứng)

=> tg AMH= tg ANH(ch- cgv)

=> AM=AN(2 cạnh tương ứng)

=> tg AMN là tg cân.

c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:

Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.

Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:

MN // BC.

19 tháng 3 2022

Bạn tự vẽ hình nha. Máy mình ko vẽ đc.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

20 tháng 8 2021

GẤP LẮM Ạ,NGAY BÂY GIỜ Ạ