Cho Oz là tia phân giác của góc xOy. Lấy điểm M trên tia Oz và hai điểm A, B lần lượt trên các tia Ox, Oy sao cho MA vuông góc với Ox, MB vuông góc với Oy(H.4.50). Chứng minh rằng MA = MB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta OMH\)và \(\Delta OMK\)có :
OM chung
\(\widehat{O_1}=\widehat{O_2}\)( do Oz là tia phân giác của ^xOy )
=> \(\Delta OMH=\Delta OMK\)( cạnh huyền - góc nhọn )
=> \(MH=MK\)( hai cạnh tương ứng )
b) Từ \(\Delta OMH=\Delta OMK\)=> \(OH=OK\)( hai cạnh tương ứng )
Xét \(\Delta MBK\)và \(\Delta MAH\)có :
\(MB=MA\)( gt )
\(MH=MK\)( cmt )
=> \(\Delta MBK=\Delta MAH\)( cạnh huyền - cạnh góc vuông )
=> \(BK=AH\)( hai cạnh tương ứng )
Ta có : \(OH=OA+AH\)
\(OK=OB+BK\)
mà OH = OK ; AH = BK
=> OA = OB ( đpcm )
Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
Suy ra: MA=MB
Xét ΔOKM vuông tại K và ΔOHM vuông tại H có
OM chung
\(\widehat{KOM}=\widehat{HOM}\)
Do đó;ΔOKM=ΔOHM
Suy ra: OH=OK
=>AH=BK
Xét ΔMAH vuông tại H và ΔMBK vuông tại K có
MA=MB
AH=BK
Do đó: ΔMHA=ΔMKB
Bạn kiểm tra lại đề từ chỗ M là điểm bất kì nằm trên Ox đến hểt
Vì Oz là tia phân giác của góc xOy
=>góc AOM = góc BOM
VÌ MA\(\perp\)Ox =>góc MAO=90o
MB \(\perp\)Oy =>góc MBO=90o
Xét \(\Delta AOM\)và \(\Delta BOM\)có:
Góc MAO= Góc MBO(Cùng bằng 90o)
OM:cạnh chung
Góc AOM = góc BOM
=>\(\Delta AOM=\Delta BOM\left(Ch-gn\right)\)
=>MA=MB(các cạnh tương ứng)
Xét hai tam giác vuông OBM và OAM có:
OM chung
\(\widehat {BOM} = \widehat {AOM}\) (gt)
\( \Rightarrow \Delta OBM = \Delta OAM\)(cạnh huyền – góc nhọn)
Suy ra MB=MA ( 2 cạnh tương ứng)