K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\dfrac{x\left(\sqrt{y}-\sqrt{z}\right)-y\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}+\dfrac{z}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{x\sqrt{y}-x\sqrt{z}-y\sqrt{x}+y\sqrt{z}+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{z}\left(x-y\right)+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{xy}-\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)+z\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{xy}-\sqrt{zx}-\sqrt{zy}+z\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{y}-\sqrt{z}\right)-\sqrt{z}\left(\sqrt{y}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

=1

4 tháng 8 2017

phân số thứ 3 sai

\(A=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+y}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)}{\left(x-y\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}\)

\(=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}+y}{x+y}\cdot\dfrac{x+\sqrt{xy}-\sqrt{xy}+y}{x-y}\)

\(=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}+y}{x-y}\)

\(=\dfrac{\sqrt{xy}+y-x-\sqrt{xy}-y}{x-y}=\dfrac{-x}{x-y}\)

Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=1

Y
25 tháng 7 2019

\(P=\frac{x\left(\sqrt{y}-\sqrt{z}\right)-y\left(\sqrt{x}-\sqrt{z}\right)+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}\)

\(P=\frac{x\left(\sqrt{y}-\sqrt{z}\right)-y\left[\left(\sqrt{y}-\sqrt{z}\right)+\left(\sqrt{x}-\sqrt{y}\right)\right]+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}\)

\(P=\frac{\left(x-y\right)\left(\sqrt{y}-\sqrt{z}\right)+\left(z-y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}\)

\(P=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)-\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}\)

\(P=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left[\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{y}+\sqrt{z}\right)\right]}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}\)

\(P=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}=1\)

=> đpcm

14 tháng 7 2019

mình cần gấp, thanks các bạn

14 tháng 7 2019

Đề chắc chắn đúng chứ bạn??

8 tháng 4 2021

a,Ta có  \(x=4-2\sqrt{3}=\sqrt{3}^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)do \(\sqrt{3}-1>0\)

\(\Rightarrow A=\frac{1}{\sqrt{3}-1-1}=\frac{1}{\sqrt{3}-2}\)

b, Với \(x\ge0;x\ne1\)

 \(B=\left(\frac{-3\sqrt{x}}{x\sqrt{x}-1}-\frac{1}{1-\sqrt{x}}\right):\left(1-\frac{x+2}{1+\sqrt{x}+x}\right)\)

\(=\left(\frac{-3\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-x-2}{x+\sqrt{x}+1}\right)\)

\(=\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=1\)

Vậy biểu thức ko phụ thuộc biến x 

c, Ta có : \(\frac{2A}{B}\)hay \(\frac{2}{\sqrt{x}-1}\)để biểu thức nhận giá trị nguyên 

thì \(\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}-1\)1-12-2
\(\sqrt{x}\)203-1 
x409vô lí 
13 tháng 4 2021

M = x.√[(2008+y²).(2008+z²)\(2008+x²)] + y.√[(2008+x²).(2008+z²)\(2008+y²)] + z.√[(2008+y²).(2008+x²)\(2008+z²)]

ta có:
2008 + x² = xy + xz + yz + x²
2008 + x² = (x+y).(x+z)
tương tự: 2008 + y² = (x+y).(y+z) và 2008 + z² = (z+y).(x+z)
chỉ việc thay vào rùi rút gọn thui

=> M = x.√[(x+y).(y+z).(x+z).(z+y)\ (x+y).(x+z)] + y.√[(x+y).(x+z).(x+z).(z+y)\(y+x).(y+z)] + z.√[(x+y).(x+z).(y+z).(y+x)\(x+z).(z+y)]

=> M = x.|y+z| + y.|z+x| + z.|x+y|
=> M = 2.2008

9 tháng 12 2018

Thay \(xy+yz+xz=2018\) ta được:

\(\left\{{}\begin{matrix}2018+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\\2018+y^2=y^2+xy+yz+xz=\left(y+z\right)\left(x+y\right)\\2018+z^2=z^2+xy+yz+xz=\left(x+z\right)\left(y+z\right)\end{matrix}\right.\)

Sau đó thay vào lần lượt đề bài là được