K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>H,M,K thẳng hàng

b: BHCK là hình thoi khi BH=HC

=>AB=AC

a: Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC

b: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{EAC}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔADE\(\sim\)ΔABC(c-g-c)