Cho góc bẹt AOB . trên cùng một nửa mặt phẳng bờ chứa AB vẽ ba tia OM,ON và OC sao cho AOM = BON < 90 độ và tia OC là tia phân giác của MON. chứng tỏ rằng OC vuộng góc với AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\widehat{AOM}=\widehat{BON}\)
\(\Rightarrow\widehat{AOM}+\widehat{MOC}+\widehat{CON}+\widehat{NOB}=180^o\)
Mà: \(\widehat{AOM}=\widehat{BON},\widehat{CON}=\widehat{COM}\)
\(\Rightarrow2\widehat{AOM}+2\widehat{MOC}=180^o\)
\(\Rightarrow\widehat{AOM}+\widehat{MOC}=90^o\Leftrightarrow\widehat{AOC}=90^o\)
\(\Rightarrow CO\perp AB\)
Vì góc AOB là góc bẹt => góc AOB = 180 độ
Vì góc AOM = BON mà OC là tia phân giác của góc MON => MOC = NOC =1/2 MON
=> AOM+MOC=BON+NOC
=> AOC = BOC mà AOC+BOC= AOB
=> AOC = BOC = 180 : 2= 90 độ
=> AOC VÀ BOC là góc vuông và OC cắt AB tại O=> OC vuông góc AB
sai đề, phải là góc AOM=góc BON. Khi đó, góc AOM+MOC+CON+NOB=180độ, AOM=BON; CON=COM nên 2.AOM+2.MOC=180độ suy ra AOM+MOC=90độ hay AOC=90độ suy ra CO vuông góc AB.
a) Ta có A O N ^ + B O N ^ = 180 ° ; B O M ^ + A O M ^ = 180 ° (hai góc kề bù) mà A O M ^ = B O N ^ (đề bài cho) nên A O N ^ = B O M ^ .
Mặt khác, tia OC là tia phân giác của góc MON nên C O N ^ = C O M ^ .
Do đó A O N ^ + C O N ^ = B O M ^ + C O M ^ (1)
Ta có tia ON nằm giữa hai tia OA, OC; tia OM nằm giữa hai tia OB, OC nên từ (1) suy ra A O C ^ = B O C ^ = 180 ° : 2 = 90 ° . Vậy O C ⊥ A B .
b) Tia OM nằm giữa hai tia OB và ON nên B O M ^ + M O N ^ = B O N ^ = m ° (1).
Mặt khác B O M ^ = 180 ° − A O M ^ = 180 ° − m ° (2).
Từ (1) và (2) suy ra: 180 ° − m ° + 90 ° = m ° ⇒ 2 m ° = 270 ° ⇒ m ° = 135 ° .
Vậy m = 135 .
Chứng minh một tia là tia phân giác, là tia đối
Khi đó, góc AOM+MOC+CON+NOB=180độ, AOM=BON; CON=COM nên 2.AOM+2.MOC=180độ suy ra AOM+MOC=90độ hay AOC=90độ suy ra CO vuông góc AB.
tia Om nằm giữa hai tia OA và OC ; tia ON nằm giữa hai tia OB và OC
do đó : \(\widehat{COA}=\widehat{O_3}+\widehat{O_1}\)và \(\widehat{COB}=\widehat{O_4}+\widehat{O_2}\)
vì \(\widehat{O_1}=\widehat{O_2}\)( gt ) ; \(\widehat{O_3}=\widehat{O_4}\)( vì tia OC là tia phân giác của \(\widehat{MON}\)) nên \(\widehat{COA}=\widehat{COB}\)
\(\widehat{COA}\)và \(\widehat{COB}\)là hai góc kề bù bằng nhau nên \(\widehat{COA}=180^o:2=90^o\)suy ra \(OC⊥AB\)
Giúp mk