K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

ta có: abc - cba = 100a + 10b + c -100c -10b - a = (100a - a) + (10b - 10b) -(100c - c) = 99a - 99c =99(a - c) chia hết cho 99

20 tháng 10 2017

 Ta có: abc - cba = 100a+10b+c-100c-10b-a

= (100a-a)+(10b-10b)-(100c-c)

= 99a - 99c

= 99(a-c) chia hết cho 99 

20 tháng 10 2017

abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a ) = 100a + 10 b + c - 100c - 10b - a = 99 a - 99 b chia hết cho 99 ( dpcm )

\(A > \frac{1}{10} + (\frac{1}{100}+...+ \frac{1}{100}) \)

\(= \frac{1}{10} + \frac{99}{100} = \frac{109}{100} > 1\)

\(=> A > 1\)

27 tháng 4 2018

ai trả lời đúng mình tick cho!!

okokok

Xét vế phải :

\(VT=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)

\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\) 

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

 \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)

6 tháng 3 2016

S=1/50+1/51+...+1/98+1/99

Ta thấy :

1/50>1/100

1/51>1/100

................

1/99>1/100

1/100=1/100

=>1/51+1/52+1/53+...+1/98+1/99>1/100+1/100+1/100+...+1/100  (Mỗi bên 50 số hạng)

=>S>50.1/100

=>S>50/100=1/2

Vậy S>1/2

28 tháng 2 2019

 S lớn hon 1/2 bạn nhé 

18 tháng 10 2018

\(S=1+2+2^2+2^3+...+2^{99}\)

   \(=\left(1+2+2^2+2^3\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}\right)\)

   \(=\left(1+2+4+8\right)+...+2^{96}.\left(1+2+2^2+2^3\right)\)

   \(=15+...+2^{96}.15\)

   \(=15.\left(1+...+2^{96}\right)⋮15\)

\(\Rightarrow\) \(S⋮15\)