Một số chia cho 3 bằng 1ab biết b bằng 7 .Tìm b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Áp dụng dấu hiệu chia hết cho 7. Bước 2. Từ a-b = 4 suy ra b= a-4. Bước 3. Tìm a và b |
Áp dụng dấu hiệu chia hết cho 7 ta có: 3.1 + a .3 + b = 9 + 3 a + b ⋮ 7 Vì a − b = 4 ⇒ b = a − 4 . Do đó, 9 + 3 a + a − 4 = 5 + 4 a ⋮ 7 Mà a , b ∈ 0 ; 1 ; … ; 9 suy ra a = 4 , b = 0 . Vậy số đó là 140. |
Vì 1ab chia hết cho nên b thuộc 0 và 5
Với b=0 để 1a0 chia hết cho 9<=> 1+a+0 chia hết cho 9 hay 1+a chia hết cho 9=>a=8
vầy ta có số 180
Với b=5 để 1a5 chia hết cho 9<=> 1+a+5 chia hết cho 9 hay 6+a chia hết cho 9=>a=3
Vậy ta có số 135
Các số cần tìm thỏa mãn đề bài là 135 và 180
tick cho mk nha bn
\(1,\\ a,\left(3x-2\right)\left(2y-3\right)=1\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2=1\\2y-3=1\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2=-1\\2y-3=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=1\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left(x;y\right)=\left\{\left(1;2\right);\left(\dfrac{1}{3};1\right)\right\}\)
\(b,\left(2x+1\right)\left(y-3\right)=10\)
Ta có bảng
\(2x+1\) | 1 | 2 | 5 | 10 | \(-1\) | \(-2\) | \(-5\) | \(-10\) |
\(y-3\) | \(10\) | \(5\) | \(2\) | \(1\) | \(-10\) | \(-5\) | \(-2\) | \(-1\) |
\(x\) | 1 | \(\dfrac{1}{2}\) | 2 | \(\dfrac{9}{2}\) | \(-1\) | \(-\dfrac{3}{2}\) | \(-3\) | \(-\dfrac{11}{2}\) |
\(y\) | 13 | 8 | 5 | 4 | \(-7\) | \(-2\) | 1 | 2 |
Vậy \(\left(x;y\right)=...\)