K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

loading...  loading...  loading...  loading...  

8 tháng 3 2017

Vì điểm I cách đều ba cạnh của tam giác ABC và nằm trong tam giác nên I là giao điểm của ba đường phân giác của tam giác ABC, tức là BI, CI lần lượt là tia phân giác của góc N và góc C. Do EF // BC nên ∠B1= ∠I1(so le trong), suy ra ∠I2 = ∠B2 .

Suy ra: BI, CI lần lượt là tia phân giác của góc B và góc C.

Do EF // BC nên ∠B1 = ∠BIE (so le trong).

Lại có: ∠B1 = ∠B2 ( vì BI là tia phân giác của góc B )

Suy ra: ∠B2 = ∠BIE

Vậy EF = EI + IF = BE + CF.

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE∼ΔACF(g-g)

31 tháng 3 2021

Có thể giải dùm mik câu b, c ko. Không thì câu b thôi cx đc😢

29 tháng 5 2017

A B C E F I 1 2 1

Vì điểm I cách đều ba cạnh của tam giác ABC và nằm trong tam giác nên I là giao điểm của ba đường phân giác của tam giác ABC, tức BI, CI lần lượt là tia phân giác của góc B và góc C. Do EF // BC nên \(\widehat{B_1}=\widehat{I_1}\) (hai góc so le trong), suy ra \(\widehat{I_1}=\widehat{B_2}\). Vậy tam giác EBI cân tại E, tức là EI = EB. Tương tự ta có FI = FC.

Vậy EF = EI + IF = BE + CF.