Một tổ may có kế hoạch mỗi ngày phải may 30 chiếc áo. Trong thực tế mỗi ngày tổ đã may được 40 chiếc áo. Do đó xưởng đã hoàn thành kế hoạch sớm hơn 3 ngày và may thêm được 20 chiếc áo nữa. Tính số áo mà tổ may theo kế hoạch.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số áo tổ phải sản xuất theo kế hoạch là x áo (x ∈ N, x > 0)
Vậy số áo mà tổ phải sản xuất theo kế hoạch là 420 áo
Đ/S: 420 chiếc áo.
Gọi số áo tổ đó phải may theo kế hoạch là a (a \(\in\) N*)
Số áo tổ đó đã may trong thực tế là a + 20
Số ngày tổ đó may theo kế hoạch là \(\frac{a}{30}\)
Số ngày tổ đó may trong thực tế là \(\frac{a+20}{40}\)
Ta có \(\frac{a}{30}=\frac{a+20}{40}+3\)
\(\Leftrightarrow4a=3\left(a+20\right)+360\)
\(\Leftrightarrow4a=3a+60+360\)
\(\Leftrightarrow4a-3a=60+360\)
\(\Leftrightarrow a=420\)
Vậy số áo tổ đó phải may theo kế hoạch là 420
gọi số áo tổ đó phải may theo kế hoạch là: x(chiếc)(x>0)
theo kế hoạch tổ đó hoàn thành trong \(\dfrac{x}{30}\)(ngày)
thực tế tổ đó làm trong: \(\dfrac{x+20}{40}\left(ngay\right)\)
hoàn tành trước thời hạn 3 ngày
\(=>\dfrac{x}{30}-\dfrac{x+20}{40}=3=>x=420\left(TM\right)\)
Vậy theo kế haoch tổ đó phải may 420 chiếc áo
gọi x là số áo dự định may (x>0)
số áo thực tế may được: x+20 cái
số ngày may theo dự định: \(\frac{x}{30}\)ngày
số ngày may theo thực tế \(\frac{x+20}{40}\)ngày
Vì hoàn thành trước thời hạn 3 ngày nên ta có phương trình:
\(\frac{x}{30}-\frac{x+20}{40}=3\)
<=>\(\frac{4x}{120}-\frac{3x+60}{120}=\frac{360}{120}\)
<=>4x-3x-60=360
<=>x=420
vậy số áo tổ may theo kê hoạch là 420 cái
gọi x là số áo dự định may (x>0)
số áo thực tế may được: x+20 cái
số ngày may theo dự định: \(\frac{x}{30}\) ngày
số ngày may theo thực tế \(\frac{x+20}{40}\) ngày
Vì hoàn thành trước thời hạn 3 ngày nên ta có phương trình:
\(\frac{x}{30}-\frac{x+20}{40}=3\)
<=>\(\frac{4x}{120}-\frac{3x+60}{120}=\frac{360}{120}\)
<=>4x-3x-60=360
<=>x=420
vậy số áo tổ may theo kê hoạch là 420 cái
số áo xưởng may phải may theo kế hoạch đã định là:x(x thuộc n*)
-số chiếc mỗi ngày theo dự định là;x/26
-số chiếc mỗi ngày thực tế là:x+104/24
do cải tiến kĩ thuật nên mỗi ngày đã may vượt mực 6 chiếc. Do đó chẳng những đã hoàn thành theo kế hoạch đã định trong 24 ngày, mà còn may thêm được 104 chiếc nữa nên ta có phương trình:
x/26+6=x+104/24
=> x+156/26=x+104/24
=> 24x+3744=26x+2704
=> -2x=-1040
=> x=520 (t/m)
Vậy số áo xưởng may phải may theo kế hoạch đã định là:520 áo
Lời giải:
Giả sử tổ may áo theo kế hoạch mỗi ngày may 40 áo, may trong $a$ ngày.
Số áo theo kế hoạch: $40a$ (chiếc)
Số áo thực tế: $(40+10).(a-2)=50(a-2)$ (chiếc)
Theo bài ra: $50(a-2)-40a=30$
$\Leftrightarrow 10a-100=30$
$\Leftrightarrow 10a=130\Leftrightarrow a=13$ (ngày)
Số áo mà tổ may theo kế hoạch: $40a=13.40=520$ (chiếc)
Thời gian hoàn thành thực tế: $a-2=13-2=11$ (ngày)
Gọi số áo mà tổ cần may kế hoạch là \(x\) (chiếc). Điều kiện \(x \in {\mathbb{N}^*}\).
Vì ban đầu, tổ có ý định may 30 chiếc áo mỗi ngày nên thời gian dự định hoàn thành kế hoạch là \(\frac{x}{{30}}\) (ngày).
Thực tế, tổ đã may thêm được 20 chiếc áo nữa nên số áo tổ đã may được là \(x + 20\) (chiếc).
Vì thực tế mỗi ngày may được 40 chiếc áo nên thời gian tổ đã may áo là \(\frac{{x + 20}}{{40}}\) (ngày)
Vì tổ hoàn thành kế hoạch sớm hơn 3 ngày nên ta có phương trình:
\(\frac{x}{{30}} - \frac{{x + 20}}{{40}} = 3\)
\(\frac{{4.x}}{{30.4}} - \frac{{\left( {x + 20} \right).3}}{{3.40}} = \frac{{120.3}}{{120}}\)
\(\frac{{4x}}{{120}} - \frac{{3x + 60}}{{120}} = \frac{{360}}{{120}}\)
\(4x - \left( {3x + 60} \right) = 360\)
\(4x - 3x - 60 = 360\)
\(x = 360 + 60\)
\(x = 420\) (thỏa mãn)
Vậy theo kế hoạch tổ cần may 420 chiếc áo.