cho x+y=m và x^2 + y^2=n. Tính giá tị biểu thức sau
P= x^3+y^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)
Bài 1:
\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)
\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)
\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2x^2+4xy-7y^2\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
`x+y=3`
`<=>(x+y)^3=9`
`<=>x^2+2xy+y^2=9`
`<=>2xy+5=9`
`<=>2xy=4`
`<=>xy=2`
`<=>x^2-xy+y^2=3`
`=>M=(x+y)(x^2-xy+y^2)`
`=3.3`
`=9`
Viết lại :
a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)
b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)
a) M=(x+y)3+2x2+4xy+2y2
M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539
b)N=(x-y)3-x2+2xy-y2
N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150
a) \(A=x^2y+y+xy^2-x\) (hẳn đề là vậy)
\(A=xy\left(x+y\right)+\left(y-x\right)\)
\(A=\left(-5\right).2\left(-5+2\right)+2+5\)
\(A=30+7=37\)
b) \(B=3x^3-2y^3-6x^2y^2+xy\)
\(B=3.\left(\frac{2}{3}\right)^3-2.\left(\frac{1}{2}\right)^3-6.\left(\frac{2}{3}\right)^2.\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)
\(B=\frac{8}{9}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)
\(B=\frac{11}{36}\)
c) \(C=2x+xy^2-x^2y-2y\)
\(C=2.\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right).\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)-2.\left(-\frac{1}{3}\right)\)
\(C=-1-\frac{1}{18}+\frac{1}{12}+\frac{2}{3}\)
\(C=-\frac{11}{36}\)
a) Ta có: \(\left(\dfrac{\left(-1\right)}{2}x^2y\right)^3\cdot4x^2y^5\)
\(=\dfrac{-1}{8}x^6y^3\cdot4x^2y^5\)
\(=\dfrac{-1}{2}x^8y^8\)
b) Bậc của đơn thức là 16
\(\hept{\begin{cases}x+y=m\\x^2+y^2=n\end{cases}\Rightarrow x^2+2xy+y^2=m^2\Rightarrow xy=\frac{m^2-n}{2}}\)
P =\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=m.\left(n-\frac{m^2-2}{2}\right)\)
\(=m.\frac{3n-m^2}{2}=\frac{3mn-m^3}{2}\)