Trong một chiếc hộp có 15 tấm thẻ giống nhau được đánh số 10; 11;...; 24. Rút ngẫu nhiên một tấm thẻ từ trong hộp. Tính xác suất của các biến cố sau:
a) A: "Rút được tấm thẻ ghi số lẻ"
b) B: "Rút được tấm thẻ ghi số nguyên tố"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do các tấm thẻ giống nhau, nên lấy 3 tấm từ 10 tấm không quan tâm thứ tự có \(C_{10}^3 = 120\)cách, suy ra \(n\left( \Omega \right) = 120\)
Gọi A là biến cố “Tích các số ghi trên ba thẻ đó là số chẵn”
Để tích các số trên thẻ là số chẵn thì ít nhất có 1 thẻ là số chẵn
Để chọn ra 3 thẻ thuận lợi cho biến cố A ta có 3 khả năng
+) Khả năng 1: 3 thẻ chọn ra có 1 thẻ có số chẵn và 2 thẻ có số lẻ có \(5.C_5^2 = 50\) khả năng
+) Khả năng 2: 3 thẻ chọn ra có 2 thẻ có số chẵn và 1 thẻ có số lẻ có \(C_5^2.5 = 50\) khả năng
+) Khả năng 3: 3 thẻ chọn ra có đều là có số chắn có \(C_5^3 = 10\) khả năng
Suy ra \(n\left( A \right) = 50 + 50 + 10 = 110\)
Vậy xác suất của biến cố A là: \(P(A) = \frac{{110}}{{120}} = \frac{{11}}{{12}}\)
- Số của thẻ lấy ra là số chẵn: Có thể xảy ra
- Số của thẻ lấy ra là số lẻ: Có thể xảy ra
- Số của thẻ lấy ra chia hết cho 10: không thể xảy ra
- Số của thẻ lấy ra nhỏ hơn 10: Chắc chắn xảy ra.
A={0;1;2;3;...;9}
a: Không có số nào lớn hơn 9 trong A nên P(A)=0
b: Không có số nào nhỏ hơn 0 trong B nên P(B)=0
a) Sau khi Minh rút thẻ số 9 thì trong hộp còn các thẻ ghi số: 0; 1; 2; 3; 4; 5; 6; 7; 8; 10
Để Hưng thắng thì Hưng phải rút được thẻ số 10
Xác suất Hưng rút được thẻ số 10 là 1/9
b) Khi Minh rút được thẻ số 0 thì Hưng sẽ rút được thẻ lớn hơn 0
⇒ Hưng luôn thắng
Vậy xác suất Hưng thua là 0
a) Vì biến cố: “ Rút được tấm thẻ ghi số nhỏ hơn 10” là biến cố chắc chắn nên xác suất rút được tấm thẻ ghi số nhỏ hơn 10 là 1.
b) Vì biến cố: “ Rút được tấm thẻ ghi số 1” là biến cố không thể nên xác suất rút được tấm thẻ ghi số 1 là 0.
c) Biến cố: “ Rút được tấm thẻ ghi số 8” là biến cố ngẫu nhiên.
Có 7 biến cố đồng khả năng: “ Rút được thẻ ghi số 2” ; “ Rút được thẻ ghi số 3”; “ Rút được thẻ ghi số 4”; “ Rút được thẻ ghi số 5”; “ Rút được thẻ ghi số 6”; “ Rút được thẻ ghi số 7”; “ Rút được thẻ ghi số 8” và luôn xảy ra 1 trong 7 biến cố đó.
Xác suất của mỗi biến cố là: \(\dfrac{1}{7}\)
Vậy xác suất rút được thẻ ghi số 8 là \(\dfrac{1}{7}\)
Có 15 kết quả có thể xảy ra. Do 15 tấm thẻ giống nhau nên 15 kết quả có thể này là đồng khả năng
a) Có 11; 13; 15; 17; 19; 21; 23 là số lẻ => Có 7 kết quả thận lợi cho biến cố A. Do đó xác suất của biến cố A là \(P(A) = \frac{7}{{15}}\)
b) Có 11; 13; 17; 19; 23 là số nguyên tố => Có 5 kết quả thuận lợi cho biến cố B. Do đó xác suất của biến cố B là \(P(B) = \frac{5}{{15}} = \frac{1}{3}\)