Tìm x,y biết:
x2 - 4xy + 5y2 +10 - 22y +26 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x,y mà lại lòi đâu ra z vậy??? bạn coi lại đề đi nào
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
x^2+5y^2-4xy+10x-22y+|x+y+z|+26=0
<=>x^2-2x(2y-5)+4y^2-20y+25+y^2-2y+1+|x...
<=>x^2-2x(2y-5)+(2y-5)^2+(y-1)^2+|x+y+z...
<=>(x-2y+5)^2+(y-1)^2+|x+y+z|=0
<=>x-2y+5=0 va y-1 va x+y+z=0
<=>x=2y-5 y=1 z=-x-y
<=>x=2-5=-3 y=1 z=3-1=2
bạn làm được chưa vậy nếu làm được thì cho mình xin cách giải với!!!!
\(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)
\(\Leftrightarrow\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\\x+y+z=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\\z=2\end{matrix}\right.\)
Bạn sửa lại đề đi:
Tìm nghiệm nguyên của phương trình: \(^{x^2-4xy+5y^2+10x-22y+26=0}\)
a)
Ta có:
\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)
\(\ge0-2=-2\)
Vậy \(A_{min}=-2\), đạt được khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)
b)\(B=4x^2+4x+8=4x^2+4x+1+7\)
\(=\left(2x+1\right)^2+7\ge0+7=7\)
Vậy \(B_{min}=7\), đạt được khi và chỉ khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)
c)
Ta có:
\(C=3x-x^2+2=2-\left(x^2-3x\right)\)
\(=2+\dfrac{9}{4}-\left(x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}\right)\)
\(=\dfrac{17}{4}-\left(x-\dfrac{3}{2}\right)^2\le\dfrac{17}{4}-0=\dfrac{17}{4}\)
Vậy \(C_{max}=\dfrac{17}{4}\), đạt được khi và chỉ khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
d) Ta có:
\(D=-x^2-5x=-\left(x^2+5x\right)=\dfrac{25}{4}-\left(x^2+2x.\dfrac{5}{2}+\dfrac{25}{4}\right)\)
\(=\dfrac{25}{4}-\left(x+\dfrac{5}{2}\right)^2\le\dfrac{25}{4}-0=\dfrac{25}{4}\)
Vậy \(D_{max}=\dfrac{25}{4}\), đạt được khi và chỉ khi \(x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\)
e) Ta có:
\(E=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2+4y^2+5^2-4xy+10x-20y+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
\(\ge0+0+2=2\)
Vậy \(E_{min}=2\), đạt được khi và chỉ khi \(x-2y+5=y-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)