K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Đk:\(x\ge0\)

\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)

\(pt\Leftrightarrow\sqrt{x+3}-2+\sqrt{3x+1}-2=2\sqrt{x}-2+\sqrt{2x+2}-2\)

\(\Leftrightarrow\frac{x+3-4}{\sqrt{x+3}+2}+\frac{3x+1-4}{\sqrt{3x+1}-2}=\frac{4x-4}{2\sqrt{x}+2}+\frac{2x+2-4}{\sqrt{2x+2}+2}\)

\(\Leftrightarrow\frac{x-1}{\sqrt{x+3}+2}+\frac{3x-3}{\sqrt{3x+1}-2}=\frac{4x-4}{2\sqrt{x}+2}+\frac{2x-2}{\sqrt{2x+2}+2}\)

\(\Leftrightarrow\frac{x-1}{\sqrt{x+3}+2}+\frac{3\left(x-1\right)}{\sqrt{3x+1}-2}-\frac{4\left(x-1\right)}{2\sqrt{x}+2}-\frac{2\left(x-1\right)}{\sqrt{2x+2}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{x+3}+2}+\frac{3}{\sqrt{3x+1}-2}-\frac{4}{2\sqrt{x}+2}-\frac{2}{\sqrt{2x+2}+2}\right)=0\)

Dễ thấy: \(\frac{1}{\sqrt{x+3}+2}+\frac{3}{\sqrt{3x+1}-2}-\frac{4}{2\sqrt{x}+2}-\frac{2}{\sqrt{2x+2}+2}>0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

12 tháng 2 2016

binh phuong 2 ve giai ra

19 tháng 10 2021

tự làm đi

2: =>2x^2-8x+4=x^2-4x+4 và x>=2

=>x^2-4x=0 và x>=2

=>x=4

3: \(\sqrt{x^2+x-12}=8-x\)

=>x<=8 và x^2+x-12=x^2-16x+64

=>x<=8 và x-12=-16x+64

=>17x=76 và x<=8

=>x=76/17

4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)

=>x^2-3x-2=x-3 và x>=3

=>x^2-4x+1=0 và x>=3

=>\(x=2+\sqrt{3}\)

6:

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)

=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)

=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)

=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)

=>-2*căn x-1=2

=>căn x-1=-1(loại)

=>PTVN

29 tháng 7 2023

1) ĐK: \(x\ge\dfrac{5}{2}\)

pt <=> \(x-4=\sqrt{2x-5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=7

2) ĐK: \(2x^2-8x+4\ge0\)

pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=4

3) ĐK: \(x\ge3\)

pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\) 

Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)

19 tháng 3 2016

8/căn(x-1)+2căn(x-1)>=8 (BDDT cosi )

9/căn(y-1)+căn(y-1)>=6

=>VT>=VP

dấu = xảy ra khi x=17 và y= 82

19 tháng 3 2016

giải cho kĩ đi