tìm min
A=(x-5)2+2(x-1)2+11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=x^2-7x+11\)
\(=x^2-2\cdot x\cdot\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{5}{4}\)
\(=\left(x-\dfrac{7}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{7}{2}\)
b: ta có: \(A=9x^2+6x+11\)
\(=9x^2+6x+1+10\)
\(=\left(3x+1\right)^2+10\ge10\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{3}\)
\(\frac{1}{3}x-1.2x-\frac{2}{23}.\left(\frac{-11}{12}+\frac{5}{6}-\frac{7}{8}\right)-\frac{1}{8}=-11\frac{2}{3}+12\frac{7}{8}\)
\(\Leftrightarrow\frac{1}{3}x-\frac{6}{5}x-\frac{2}{23}.\frac{-23}{24}-\frac{1}{8}=\frac{-35}{3}+\frac{103}{8}\)
\(\Leftrightarrow\frac{-13}{15}x+\frac{1}{12}-\frac{1}{8}=\frac{29}{24}\)
\(\Leftrightarrow\frac{-13}{15}x-\frac{1}{24}=\frac{29}{24}\)
\(\Leftrightarrow\frac{-13}{15}x=\frac{5}{4}\)
\(\Leftrightarrow x=\frac{-75}{52}\)
Vậy \(x=\frac{-75}{52}\)
1/3x-1/2x-2/23.(-11/12+5/6-7/8)-1/8=-31/3+103/8
1/3x-1,2x-2/23.(-11/12+5/6-7/8)-1/8=61/24
1/3x-1,2x-2/23.-23/24-1/8=61/24
1/3x-1,2x-1/12-1/8=61/24
1/3x-1,2x+1/24=61/24
x.(1/3-1,2)+1/24=61/24
x.-13/15+1/24=61/24
x.-33/40=61/24
x=61/24:-33/40
x=61/24×-40/33
x=-305/99
vậy x=-305/99
a: A=-(x-7)^2-888<=-888
Dấu = xảy ra khi x=7
b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)
Dấu = xảy ra khi x=1/2 và y=5
c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)
Dấu = xảy ra khi x=-3 và y=5/2
a, 3x - x - 3 = 11
=> 2x - 3 = 11
=> 2x = 14
=> x = 7
b, (x-2)(x-5) = 0
=> \(\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
c, d là tương tự
bài 2
a, (x-1)(y+3) = 5
=> \(\hept{\begin{cases}x-1=1\\y+3=5\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=2\end{cases}}\)
=> \(\hept{\begin{cases}x-1=5\\y+3=1\end{cases}}\)=> \(\hept{\begin{cases}x=6\\y=-2\end{cases}}\)
câu sau tương tự
a) ĐKXĐ : \(3\le x\le7\)
Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)
Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)
A= \(\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)
=\(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
=\(\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)
\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\)
\(\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|\)
=2.
dấu = khi và chỉ khi \(\left(\sqrt{x-1}+1\right).\left(1-\sqrt{x-1}\right)=0\)
\(A=x^2-10x+25+2x^2-4x+2+11=3x^2-14x+38=3\left(x^2-\frac{14}{3}x+\frac{38}{3}\right)\)
\(=3\left(x^2-2\cdot\frac{7}{3}x+\frac{49}{9}-\frac{49}{9}+\frac{38}{3}\right)=3\left(x-\frac{7}{3}\right)^2+\frac{65}{3}\ge\frac{65}{3}\)
Vậy \(Min_A=\frac{65}{3}\) khi x=7/3
(kiểm tra lại nhé, hôm nay tớ làm bài dễ bị sai lắm)