Bác Hùng vẽ bản đồ trong đó dùng ba đỉnh A, B, C của tam giác ABC lần lượt mô tả ba vị trí M, N, P trong thực tiễn. Bác Duy cũng vẽ một bản đồ, trong đó dùng ba đỉnh A', B', C' của tam giác A'B'C' lần lượt mô tả ba vị trí M, N, P đó. Tỉ lệ bản đồ mà bác Hùng và bác Duy vẽ lần lượt là 1 : 1 000 000 và 1 : 500 000. Chứng minh \(\Delta A'B'C'\; \backsim\Delta ABC\) và tính tỉ số đồng dạng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác A’B’C’ đồng dạng với tam giác ABC theo tỉ số \(\frac{1}{{1\,000\,000}}\) nên ta có:
\(\begin{array}{l}\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}} = \frac{1}{{1\,000\,000}}\\ \Rightarrow \frac{4}{{AB}} = \frac{5}{{BC}} = \frac{6}{{AC}} = \frac{1}{{1\,000\,000}}\end{array}\)
\( \Rightarrow \)AB = 4 000 000cm = 40km.
\( \Rightarrow \)BC = 5 000 000cm = 50km.
\( \Rightarrow \)AC = 6 000 000cm = 60km.
Vậy khoảng cách giữa A và B là 40km, khoảng cách giữa B và C là 50km, khoảng cách giữa C và A là 60km.
Để biết thành phố B có nhận được tín hiệu không thì phải tính được khoảng cách giữa hai thành phố B và C.
Sử dụng bất đẳng thức của tam giác và hệ quả vào ΔABC, ta có:
AB - AC < BC < AB + AC (1)
Thay các giá trị AB = 70km, AC = 30km vào (1), ta có:
70 - 30 < BC < 70 + 30 ⇔ 40 < BC < 100
Vì BC < 100 nên máy phát sóng để ở C có bán kính hoạt động bằng 100km thì B nhận được tín hiệu.
Để biết thành phố B có nhận được tín hiệu không thì phải tính được khoảng cách giữa hai thành phố B và C.
Sử dụng bất đẳng thức của tam giác và hệ quả vào ΔABC, ta có:
AB - AC < BC < AB + AC (1)
Thay các giá trị AB = 70km, AC = 30km vào (1), ta có:
70 - 30 < BC < 70 + 30 ⇔ 40 < BC < 100
Vì BC > 40 nên máy phát sóng để ở C có bán kính hoạt động bằng 40km thì B không nhận được tín hiệu.
Theo bất đẳng thức tam giác ta có:
\(\left|AC-AB\right|< BC< AC+AB\)
\(\left|30-70\right|< BC< 30+70\)
\(40< BC< 100\)
a) Máy phát sóng có bán kính 40km thì TP B ko nhận đc tín hiệu vì \(BC>\text{40}\)
b) Máy phát sóng có bán kính 100km thì TP B nhận đc tín hiệu vì \(BC< 100\)
Để giải quyết câu hỏi của bài toán ta cần xét khoảng cách BC.
Trong ∆ABC theo bất đẳng thức của tam giác và hệ quả ta có: \(AB-AC< BC< AB+AC\)
Thay giá trị: AB = 70km, AC = 30km
\(\Rightarrow70-30< BC< 70+30\Rightarrow40< BC< 100\)
a) Nếu máy phát sóng để ở C có bán kính hoạt động bằng 40km thì ở B không nhận được tín hiệu vì BC > 40.
b) Nếu máy phát sóng để ở C có bán kính hoạt động bằng 100km thì ở B nhận được tín hiệu vì BC < 100.
Trong tam giác thì 1 cạnh bao giờ cũng lớn hơn hiệu 2 cạnh còn lại và nhỏ hơn tổng 2 cạnh còn lại
=> 70-30 < BC < 70+30
=> 40 < BC < 100
a. B không nhận được tín hiệu
b. B nhận được tín hiệu
a) Theo bất đẳng thức tam giác CB > AB –AC hay CB > 90 – 30
CB > 60
Nếu đặt tại C máy phát song truyền thanh có bán kình hoạt động bằng 60km thì thành phố B không nhận được tín hiệu
b)Mặt khác BC < AC + AB
Nên BC < 30 + 90
BC < 120.
Nếu đặt tại C máy phát song truyền thanh có bán kính hoạt động bằng 120km thì thành phố B nhân được tín hiệu.
Các cạnh thật là
3 x 1000 = 3000 (cm) = 30 (m)
5 x 1000 = 5000 (cm) = 50 (m)
4 x 1000 = 4000 (cm) = 40 (m)
chu vi: 30 + 50 + 40 = 120 (m)
ĐS : 120m
Like mình nha !
Đổi 3m=30m 4cm=40m 5cm=50m
chu vi là: 30+40+50 =120 (m)
ĐS :120 m
Theo giả thiết, ta có:
\(\Delta ABC \backsim\Delta MNP\) theo hệ số tỉ lệ là \(\frac{1}{{1\,000\,000}}\)
\(\Delta A'B'C' \backsim\Delta MNP\) theo hệ số tỉ lệ là \(\frac{1}{{1\,500\,000}}\).
Từ đó ta có:
\(\begin{array}{l}\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}} = 1\,000\,000\\ \Rightarrow AB = 1\,000\,000MN,\,\,BC = 1\,000\,000NP,\,\,CA = 1\,000\,000PM\end{array}\)
và \(\begin{array}{l}\frac{{A'B'}}{{MN}} = \frac{{B'C'}}{{NP}} = \frac{{C'A'}}{{PM}} = 1\,500\,000\\ \Rightarrow A'B' = 1\,500\,000MN,\,\,B'C' = 1\,500\,000NP,\,\,C'A' = 1\,500\,000PM\end{array}\)
Ta thấy
\(\begin{array}{l}\frac{{AB}}{{A'B'}} = \frac{{1\,000\,000MN}}{{1\,500\,000MN}} = \frac{2}{3}\\\frac{{BC}}{{B'C'}} = \frac{{1\,000\,000NP}}{{1\,500\,000NP}} = \frac{2}{3}\\\frac{{CA}}{{C'A'}} = \frac{{1\,000\,000PM}}{{1\,500\,000PM}} = \frac{2}{3}\\ \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}}\end{array}\)
\( \Rightarrow \Delta ABC \backsim\Delta A'B'C'\) (c-c-c) với tỉ số đồng dạng là \(\frac{2}{3}\).