K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2015

ta có: 1/2^2<1/1.2

1/3^2<1/2.3

1/4^2<1/3.4

...

1/2010^2<1/2009.2010

=>1/2^2+1/3^2+1/4^2+...+1/2010^2<1/1.2+1/2.3+1/3.4+...+1/2009.2010

=1-1/2+1/2-1/3+...+1/2009-1/2010

=1-1/2010<1

=>đpcm

23 tháng 2 2016

cái này khó quá nâng cao à

23 tháng 2 2016

khó quá vậy giống nâng cao

29 tháng 7 2015

Ghi lộn đề thiếu thì phải. Hình như thiếu phân số 1/2011

18 tháng 2 2017

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+....+\frac{1}{2010}}\)

13 tháng 9 2016

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+...+\left(\frac{1}{2010}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}\right)}\)

\(A=\frac{1}{2011}\)

 

13 tháng 9 2016

dunt

7 tháng 2 2018

Bạn giải cũng được đấy alibaba nguyễn, nhưng theo mình thì làm cách này dễ hiểu hơn!

Ta có: \(C=\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)

Đặt \(A=\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}\)

\(A=\frac{2010}{1}+1+\frac{2009}{1}+1+\frac{2008}{1}+1+...+\frac{1}{2010}+1-2010\)

\(=\frac{2011}{1}+\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}-\frac{2011.2010}{2011}\)

\(=2011\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}-1\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\)

Ta có: \(C=\frac{A}{B}=2011\)(lấy A-B)

Ta có :

\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)

\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)

Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)

~ Học tốt ~

28 tháng 2 2018

a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1

  = 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011

  = 2011(1/2+1/3+1/4+...+1/2011)

Ta có: B= 1/2+1/3+1/4+...+1/2011

suy ra A/B= 2011

13 tháng 3 2018

=1/2010