K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có : 
K1 = 2^(a1).3^(b1) 
K2 = 2^(a2).3^(b2) 
K3 = 2^(a3).3^(b3) 
K4 = 2^(a4).3^(b4) 
K5 = 2^(a5).3^(b5) 
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên) 
Xét 4 tập hợp sau : 
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ) 
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn) 
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ) 
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn) 
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj 
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) 
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương. 

22 tháng 9 2020

Cách 1: 

Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.

(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.

Cách 2:

Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.

Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.

31 tháng 5 2021

Giả sử bốn số nguyên tố đó là \(p_1,p_2,p_3,p_4\).

Khi đó các số đã cho đều viết được dưới dạng \(p_1^{a_1}p_2^{a_2}p_3^{a_3}p_4^{a_4}\) với \(a_1,a_2,a_3,a_4\) là các số tự nhiên.

Theo nguyên lí Dirichlet, tồn tại 9 số có hệ số \(a_1\) cùng tính chẵn, lẻ.

Trong 9 số này, tồn tại 5 số có hệ số \(a_2\) cùng tính chẵn, lẻ.

Trong 5 số này, tồn tại 3 số có hệ số \(a_3\) cùng tính chẵn, lẻ.

Trong 3 số này, tồn tại 2 số có hệ số \(a_4\) cùng tính chẵn, lẻ. Tích hai số này là số chính phương.

30 tháng 1 2019

\(\text{1 . 2016}^z\text{ + 2017}^y\text{ = 2018}^x\)

\(\text{TH1 : z = 0}\)

\(\Rightarrow2016^0+2017^y=2018^x\)

\(\Rightarrow1+2017^y=2018^x\)

\(\Rightarrow y=1;x=1\)

\(\text{TH2 : y = 0 }\)

\(\Rightarrow2016^z+2017^0=2018^x\)

\(\Rightarrow2016^z+1=2018^x\)

\(\text{Vế trái là số lẻ khi x }\ge1\)

\(\text{Vế phải là số chẵn khi x }\ge1\)

\(\Rightarrow\text{TH2 bị loại}\)

\(\text{TH3 : }x,y,z\ne0\)

\(\Rightarrow2016^z+2017^y\text{ là số lẻ}\)

\(\Rightarrow2018^x\text{ là số chẵn}\)

\(\Rightarrow\text{TH3 bị loại}\)

\(\text{Vậy z = 0 ; y = 1 ; x = 1}\)

13 tháng 9 2021

undefined

13 tháng 9 2021

hơi mờ xíu=>

21 tháng 11 2015

1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

2. 

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)

 

 

                                                                          

21 tháng 11 2015

chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu

VD: 21 không là số chính phương

81=92 là số chính phương